Integration of proprioceptive signals from the various effectors with visual feedback of self-motion from the retina is necessary for whole-body movement and locomotion. Here, we tested whether the human visual motion areas involved in processing optic flow signals simulating self-motion are also activated by goal-directed movements (as saccades or pointing) performed with different effectors (eye, hand, and foot), suggesting a role in visually guiding movements through the external environment. To achieve this aim, we used a combined approach of task-evoked activity and effective connectivity (PsychoPhysiological Interaction, PPI) by fMRI. We localized a set of six egomotion-responsive visual areas through the flow field stimulus and distinguished them into visual (pIPS/V3A, V6+ , IPSmot/VIP) and visuomotor (pCi, CSv, PIC) areas according to recent literature. We tested their response to a visuomotor task implying spatially directed delayed eye, hand, and foot movements. We observed a posterior-to-anterior gradient of preference for eye-to-foot movements, with posterior (visual) regions showing a preference for saccades, and anterior (visuomotor) regions showing a preference for foot pointing. No region showed a clear preference for hand pointing. Effective connectivity analysis showed that visual areas were more connected to each other with respect to the visuomotor areas, particularly during saccades. We suggest that visual and visuomotor egomotion regions can play different roles within a network that integrates sensory-motor signals with the aim of guiding movements in the external environment.

Egomotion-related visual areas respond to goal-directed movements / Bellagamba, Martina; Sulpizio, Valentina; Fattori, Patrizia; Galati, Gaspare; Galletti, Claudio; Maltempo, Teresa; Pitzalis, Sabrina. - In: BRAIN STRUCTURE AND FUNCTION. - ISSN 1863-2653. - ELETTRONICO. - 227:(2022), pp. 2313-2328. [10.1007/s00429-022-02523-9]

Egomotion-related visual areas respond to goal-directed movements

Fattori, Patrizia;Galletti, Claudio;
2022

Abstract

Integration of proprioceptive signals from the various effectors with visual feedback of self-motion from the retina is necessary for whole-body movement and locomotion. Here, we tested whether the human visual motion areas involved in processing optic flow signals simulating self-motion are also activated by goal-directed movements (as saccades or pointing) performed with different effectors (eye, hand, and foot), suggesting a role in visually guiding movements through the external environment. To achieve this aim, we used a combined approach of task-evoked activity and effective connectivity (PsychoPhysiological Interaction, PPI) by fMRI. We localized a set of six egomotion-responsive visual areas through the flow field stimulus and distinguished them into visual (pIPS/V3A, V6+ , IPSmot/VIP) and visuomotor (pCi, CSv, PIC) areas according to recent literature. We tested their response to a visuomotor task implying spatially directed delayed eye, hand, and foot movements. We observed a posterior-to-anterior gradient of preference for eye-to-foot movements, with posterior (visual) regions showing a preference for saccades, and anterior (visuomotor) regions showing a preference for foot pointing. No region showed a clear preference for hand pointing. Effective connectivity analysis showed that visual areas were more connected to each other with respect to the visuomotor areas, particularly during saccades. We suggest that visual and visuomotor egomotion regions can play different roles within a network that integrates sensory-motor signals with the aim of guiding movements in the external environment.
2022
Egomotion-related visual areas respond to goal-directed movements / Bellagamba, Martina; Sulpizio, Valentina; Fattori, Patrizia; Galati, Gaspare; Galletti, Claudio; Maltempo, Teresa; Pitzalis, Sabrina. - In: BRAIN STRUCTURE AND FUNCTION. - ISSN 1863-2653. - ELETTRONICO. - 227:(2022), pp. 2313-2328. [10.1007/s00429-022-02523-9]
Bellagamba, Martina; Sulpizio, Valentina; Fattori, Patrizia; Galati, Gaspare; Galletti, Claudio; Maltempo, Teresa; Pitzalis, Sabrina
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/889849
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact