This study proposes an approach to the construction of granular models directly based on information granules expressed both in input and output spaces. Associating these information granules, the con- structed granular models come in the framework of three layers networks: input granules, an inference scheme and output granules. The proposed approach consists of two stages. First, an augmented principle of justifiable granularity is proposed and applied to construct information granules in an input space. This principle constructs information granules not only through establishing a sound balance between two criteria, i.e., coverage and specificity, but also by optimizing those information granules on the basis of their homogeneity assessed with respect to data localized in output space. At the second stage, we propose an inference scheme by analyzing a location of an input datum in relation with the already formed information granules in an input space. The computed relation can be quantified as membership grades, thus yielding aggregation results involving information granules in an output space. The performance of the proposed granular model is supported by the mechanisms of granular computing and the principle of justifiable granularity. Experimental studies concerning synthetic and publicly available data are performed and some comparative analysis involving rule-based models is given.

Jing, T., Wang, C., Pedrycz, W., Li, Z., Succi, G., Zhou, M. (2022). Granular models as networks of associations of information granules: A development scheme via augmented principle of justifiable granularity. APPLIED SOFT COMPUTING, 115, 108062-108076 [10.1016/j.asoc.2021.108062].

Granular models as networks of associations of information granules: A development scheme via augmented principle of justifiable granularity

Succi, Giancarlo;
2022

Abstract

This study proposes an approach to the construction of granular models directly based on information granules expressed both in input and output spaces. Associating these information granules, the con- structed granular models come in the framework of three layers networks: input granules, an inference scheme and output granules. The proposed approach consists of two stages. First, an augmented principle of justifiable granularity is proposed and applied to construct information granules in an input space. This principle constructs information granules not only through establishing a sound balance between two criteria, i.e., coverage and specificity, but also by optimizing those information granules on the basis of their homogeneity assessed with respect to data localized in output space. At the second stage, we propose an inference scheme by analyzing a location of an input datum in relation with the already formed information granules in an input space. The computed relation can be quantified as membership grades, thus yielding aggregation results involving information granules in an output space. The performance of the proposed granular model is supported by the mechanisms of granular computing and the principle of justifiable granularity. Experimental studies concerning synthetic and publicly available data are performed and some comparative analysis involving rule-based models is given.
2022
Jing, T., Wang, C., Pedrycz, W., Li, Z., Succi, G., Zhou, M. (2022). Granular models as networks of associations of information granules: A development scheme via augmented principle of justifiable granularity. APPLIED SOFT COMPUTING, 115, 108062-108076 [10.1016/j.asoc.2021.108062].
Jing, TaiLong; Wang, Cong; Pedrycz, Witold; Li, ZhiWu; Succi, Giancarlo; Zhou, MengChu
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/888497
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact