We present the result of a detailed analysis of Hubble Space Telescope UV and optical deep images of the massive and young (~1.5 Gyr) stellar cluster NGC 1783 in the Large Magellanic Cloud. This system does not show evidence of multiple populations (MPs) along the red giant branch (RGB) stars. However, we find that the cluster main sequence (MS) shows evidence of a significant broadening (50% larger than what is expected from photometric errors) along with hints of possible bimodality in the MP sensitive (m F343N - m F438W, m F438W) color-magnitude diagram (CMD). Such an effect is observed in all color combinations including the m F343N filter, while it is not found in the optical CMDs. This observational evidence suggests we might have found light-element chemical abundance variations along the MS of NGC 1783, which represents the first detection of MPs in a system younger than 2 Gyr. A comparison with isochrones including MP-like abundances shows that the observed broadening is compatible with a N abundance enhancement of ?([N/Fe]) ~ 0.3. Our analysis also confirms previous results about the lack of MPs along the cluster RGB. However, we find that the apparent disagreement between the results found on the MS and the RGB is compatible with the mixing effects linked to the first dredge up. This study provides new key information about the MP phenomenon and suggests that star clusters form in a similar way at any cosmic age.

Expanding the Time Domain of Multiple Populations: Evidence of Nitrogen Variations in the ~1.5 Gyr Old Star Cluster NGC 1783

Cadelano M.;Mucciarelli A.
Membro del Collaboration Group
;
2022

Abstract

We present the result of a detailed analysis of Hubble Space Telescope UV and optical deep images of the massive and young (~1.5 Gyr) stellar cluster NGC 1783 in the Large Magellanic Cloud. This system does not show evidence of multiple populations (MPs) along the red giant branch (RGB) stars. However, we find that the cluster main sequence (MS) shows evidence of a significant broadening (50% larger than what is expected from photometric errors) along with hints of possible bimodality in the MP sensitive (m F343N - m F438W, m F438W) color-magnitude diagram (CMD). Such an effect is observed in all color combinations including the m F343N filter, while it is not found in the optical CMDs. This observational evidence suggests we might have found light-element chemical abundance variations along the MS of NGC 1783, which represents the first detection of MPs in a system younger than 2 Gyr. A comparison with isochrones including MP-like abundances shows that the observed broadening is compatible with a N abundance enhancement of ?([N/Fe]) ~ 0.3. Our analysis also confirms previous results about the lack of MPs along the cluster RGB. However, we find that the apparent disagreement between the results found on the MS and the RGB is compatible with the mixing effects linked to the first dredge up. This study provides new key information about the MP phenomenon and suggests that star clusters form in a similar way at any cosmic age.
2022
Cadelano M.; Dalessandro E.; Salaris M.; Bastian N.; Mucciarelli A.; Saracino S.; Martocchia S.; Cabrera-Ziri I.
File in questo prodotto:
File Dimensione Formato  
Cadelano et al. - 2022 - Expanding the Time Domain of Multiple Populations.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Creative commons
Dimensione 1.48 MB
Formato Adobe PDF
1.48 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/887811
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 12
social impact