We construct a differential graded algebra to compute the cohomology of ordered configuration spaces on an algebraic variety with vanishing Euler characteristic. We show that the k-th Betti number of Conf (C, n) (C is an elliptic curve) grows as a polynomial of degree exactly 2 k- 2. We also compute [InlineEquation not available: see fulltext.] for k< 6 and arbitrary n.

Pagaria R. (2022). Asymptotic growth of Betti numbers of ordered configuration spaces of an elliptic curve. EUROPEAN JOURNAL OF MATHEMATICS, 8(2), 427-445 [10.1007/s40879-022-00534-8].

Asymptotic growth of Betti numbers of ordered configuration spaces of an elliptic curve

Pagaria R.
2022

Abstract

We construct a differential graded algebra to compute the cohomology of ordered configuration spaces on an algebraic variety with vanishing Euler characteristic. We show that the k-th Betti number of Conf (C, n) (C is an elliptic curve) grows as a polynomial of degree exactly 2 k- 2. We also compute [InlineEquation not available: see fulltext.] for k< 6 and arbitrary n.
2022
Pagaria R. (2022). Asymptotic growth of Betti numbers of ordered configuration spaces of an elliptic curve. EUROPEAN JOURNAL OF MATHEMATICS, 8(2), 427-445 [10.1007/s40879-022-00534-8].
Pagaria R.
File in questo prodotto:
File Dimensione Formato  
main (10).pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 517.46 kB
Formato Adobe PDF
517.46 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/886798
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact