Motivated by Stanley's conjecture on the multiplication of Jack symmetric functions, we prove a couple of identities showing that skew Jack symmetric functions are semi-invariant up to translation and rotation of a π angle of the skew diagram. It follows that, in some special cases, the coefficients of the skew Jack symmetric functions with respect to the basis of the monomial symmetric functions are polynomials with nonnegative integer coefficients.
Bravi, P., Gandini, J. (2022). Some Combinatorial Properties of Skew Jack Symmetric Functions. ELECTRONIC JOURNAL OF COMBINATORICS, 29(2), 1-20 [10.37236/10542].
Some Combinatorial Properties of Skew Jack Symmetric Functions
Gandini, Jacopo
2022
Abstract
Motivated by Stanley's conjecture on the multiplication of Jack symmetric functions, we prove a couple of identities showing that skew Jack symmetric functions are semi-invariant up to translation and rotation of a π angle of the skew diagram. It follows that, in some special cases, the coefficients of the skew Jack symmetric functions with respect to the basis of the monomial symmetric functions are polynomials with nonnegative integer coefficients.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
17 EJC.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non opere derivate (CCBYND)
Dimensione
474.67 kB
Formato
Adobe PDF
|
474.67 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.