The weight-transfer effect, consisting of the change in dynamic load distribution between the front and the rear tractor axles, is one of the most impairing phenomena for the performance, comfort, and safety of agricultural operations. Excessive weight transfer from the front to the rear tractor axle can occur during operation or manoeuvring of implements connected to the tractor through the three-point hitch (TPH). In this respect, an optimal design of the TPH can ensure better dynamic load distribution and ultimately improve operational performance, comfort, and safety. In this study, a computational tool (the Optimiser) for the determination of a TPH geometry which minimises the weight-transfer effect is developed. The Optimiser is based on a constrained minimisation algorithm. The objective function to be minimized is related to the tractor front-to-rear axle load transfer during a simulated reference manoeuvre performed with a reference implement on a reference soil. Simulations are based on a dynamic model of the tractor-TPH-implement aggregate. The geometry determined by the Optimiser complies with the ISO-730 Standard functional requirements and other design requirements. The interaction between the soil and the implement during the simulated reference manoeuvre was successfully validated against experimental data. The simulation results show that the adopted reference manoeuvre is effective in triggering the weight-transfer effect, with the front axle load exhibiting a peak-to-peak value of 27.1 kN during the manoeuvre. A benchmark test was conducted starting from the geometry of a commercially available TPH; the test showed that the Optimiser, after 36 iterations, was able to find an optimised TPH geometry which allows to reduce the weight-transfer effect by 14.9%.

A Computational Tool for Three-Point Hitch Geometry Optimisation Based on Weight-Transfer Minimisation

Avello Fernández L.;Maraldi M.;Mattetti M.;Varani M.
2022

Abstract

The weight-transfer effect, consisting of the change in dynamic load distribution between the front and the rear tractor axles, is one of the most impairing phenomena for the performance, comfort, and safety of agricultural operations. Excessive weight transfer from the front to the rear tractor axle can occur during operation or manoeuvring of implements connected to the tractor through the three-point hitch (TPH). In this respect, an optimal design of the TPH can ensure better dynamic load distribution and ultimately improve operational performance, comfort, and safety. In this study, a computational tool (the Optimiser) for the determination of a TPH geometry which minimises the weight-transfer effect is developed. The Optimiser is based on a constrained minimisation algorithm. The objective function to be minimized is related to the tractor front-to-rear axle load transfer during a simulated reference manoeuvre performed with a reference implement on a reference soil. Simulations are based on a dynamic model of the tractor-TPH-implement aggregate. The geometry determined by the Optimiser complies with the ISO-730 Standard functional requirements and other design requirements. The interaction between the soil and the implement during the simulated reference manoeuvre was successfully validated against experimental data. The simulation results show that the adopted reference manoeuvre is effective in triggering the weight-transfer effect, with the front axle load exhibiting a peak-to-peak value of 27.1 kN during the manoeuvre. A benchmark test was conducted starting from the geometry of a commercially available TPH; the test showed that the Optimiser, after 36 iterations, was able to find an optimised TPH geometry which allows to reduce the weight-transfer effect by 14.9%.
2022
Avello Fernández L.; Maraldi M.; Mattetti M.; Varani M.
File in questo prodotto:
File Dimensione Formato  
2022 - A Computational Tool for Three-Point Hitch Geometry Optimisation Based on Weight-Transfer Minimisation.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 7.01 MB
Formato Adobe PDF
7.01 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/884765
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact