Future extreme sea levels (ESLs) and flood risk along European coasts will be strongly impacted by global warming. Yet, comprehensive projections of ESL that include mean sea level (MSL), tides, waves, and storm surges do not exist. Here, we show changes in all components of ESLs until 2100 in view of climate change. We find that by the end of this century, the 100-year ESL along Europe's coastlines is on average projected to increase by 57 cm for Representative Concentration Pathways (RCP)4.5 and 81 cm for RCP8.5. The North Sea region is projected to face the highest increase in ESLs, amounting to nearly 1 m under RCP8.5 by 2100, followed by the Baltic Sea and Atlantic coasts of the UK and Ireland. Relative sea level rise (RSLR) is shown to be the main driver of the projected rise in ESL, with increasing dominance toward the end of the century and for the high-concentration pathway. Changes in storm surges and waves enhance the effects of RSLR along the majority of northern European coasts, locally with contributions up to 40%. In southern Europe, episodic extreme events tend to stay stable, except along the Portuguese coast and the Gulf of Cadiz where reductions in surge and wave extremes offset RSLR by 20–30%. By the end of this century, 5 million Europeans currently under threat of a 100-year ESL could be annually at risk from coastal flooding under high-end warming. The presented dataset is available through this link: http://data.jrc.ec.europa.eu/collection/LISCOAST. Plain Language Summary: Future extreme sea levels and flood risk along European coasts will be strongly impacted by global warming. Here, we show changes in all acting components, i.e., sea level rise, tides, waves, and storm surges, until 2100 in view of climate change. We find that by the end of this century the 100-year event along Europe will on average increase between 57 and 81 cm. The North Sea region is projected to face the highest increase, amounting to nearly 1 m under a high emission scenario by 2100, followed by the Baltic Sea and Atlantic coasts of the UK and Ireland. Sea level rise is the main driver of the changes, but intensified climate extremes along most of northern Europe can have significant local effects. Little changes in climate extremes are shown along southern Europe, with the exception of a projected decrease along the Portuguese coast and the Gulf of Cadiz, offseting sea level rise by 20–30%. By the end of this century, 5 million Europeans currently under threat of a 100-year coastal flood event could be annually at risk from coastal flooding under high-end warming.

Vousdoukas M.I., Mentaschi L., Voukouvalas E., Verlaan M., Feyen L. (2017). Extreme sea levels on the rise along Europe's coasts. EARTH'S FUTURE, 5(3), 304-323 [10.1002/2016EF000505].

Extreme sea levels on the rise along Europe's coasts

Mentaschi L.;
2017

Abstract

Future extreme sea levels (ESLs) and flood risk along European coasts will be strongly impacted by global warming. Yet, comprehensive projections of ESL that include mean sea level (MSL), tides, waves, and storm surges do not exist. Here, we show changes in all components of ESLs until 2100 in view of climate change. We find that by the end of this century, the 100-year ESL along Europe's coastlines is on average projected to increase by 57 cm for Representative Concentration Pathways (RCP)4.5 and 81 cm for RCP8.5. The North Sea region is projected to face the highest increase in ESLs, amounting to nearly 1 m under RCP8.5 by 2100, followed by the Baltic Sea and Atlantic coasts of the UK and Ireland. Relative sea level rise (RSLR) is shown to be the main driver of the projected rise in ESL, with increasing dominance toward the end of the century and for the high-concentration pathway. Changes in storm surges and waves enhance the effects of RSLR along the majority of northern European coasts, locally with contributions up to 40%. In southern Europe, episodic extreme events tend to stay stable, except along the Portuguese coast and the Gulf of Cadiz where reductions in surge and wave extremes offset RSLR by 20–30%. By the end of this century, 5 million Europeans currently under threat of a 100-year ESL could be annually at risk from coastal flooding under high-end warming. The presented dataset is available through this link: http://data.jrc.ec.europa.eu/collection/LISCOAST. Plain Language Summary: Future extreme sea levels and flood risk along European coasts will be strongly impacted by global warming. Here, we show changes in all acting components, i.e., sea level rise, tides, waves, and storm surges, until 2100 in view of climate change. We find that by the end of this century the 100-year event along Europe will on average increase between 57 and 81 cm. The North Sea region is projected to face the highest increase, amounting to nearly 1 m under a high emission scenario by 2100, followed by the Baltic Sea and Atlantic coasts of the UK and Ireland. Sea level rise is the main driver of the changes, but intensified climate extremes along most of northern Europe can have significant local effects. Little changes in climate extremes are shown along southern Europe, with the exception of a projected decrease along the Portuguese coast and the Gulf of Cadiz, offseting sea level rise by 20–30%. By the end of this century, 5 million Europeans currently under threat of a 100-year coastal flood event could be annually at risk from coastal flooding under high-end warming.
2017
Vousdoukas M.I., Mentaschi L., Voukouvalas E., Verlaan M., Feyen L. (2017). Extreme sea levels on the rise along Europe's coasts. EARTH'S FUTURE, 5(3), 304-323 [10.1002/2016EF000505].
Vousdoukas M.I.; Mentaschi L.; Voukouvalas E.; Verlaan M.; Feyen L.
File in questo prodotto:
File Dimensione Formato  
Earth s Future - 2017 - Vousdoukas - Extreme sea levels on the rise along Europe s coasts.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 36.34 MB
Formato Adobe PDF
36.34 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/883775
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 239
  • ???jsp.display-item.citation.isi??? 210
social impact