A microplate is modelled as an elastic plate with two long strike‐slip boundaries, lying over a Maxwell‐type viscoelastic asthenosphere. The microplate is subjected to a constant and uniform shear strain rate by the opposite motions of two adjoining larger plates. After the occurrence of an earthquake at one of the microplate boundaries, the time evolution of shear stress at the other boundary is studied. It is found that stress build‐up at the second boundary is delayed due to stress diffusion governed by the asthenosphere relaxation. Earthquake occurrence at this latter boundary would be delayed depending upon both the microplate width and the ratio between the Maxwell relaxation time of the asthenosphere and a characteristic time required for tectonic strain to recover rupture conditions. It turns out that the parameters which determine the occurrence of seismic activity along the microplate boundaries are more strictly constrained in the presence of a viscoelastic asthenosphere than in the case of an elastic half‐pace model.

A dislocation model of microplate boundary ruptures n the presence of a viscoelastic asthenosphere

Bonafede M.;Boschi E.;Dragoni M.
1984

Abstract

A microplate is modelled as an elastic plate with two long strike‐slip boundaries, lying over a Maxwell‐type viscoelastic asthenosphere. The microplate is subjected to a constant and uniform shear strain rate by the opposite motions of two adjoining larger plates. After the occurrence of an earthquake at one of the microplate boundaries, the time evolution of shear stress at the other boundary is studied. It is found that stress build‐up at the second boundary is delayed due to stress diffusion governed by the asthenosphere relaxation. Earthquake occurrence at this latter boundary would be delayed depending upon both the microplate width and the ratio between the Maxwell relaxation time of the asthenosphere and a characteristic time required for tectonic strain to recover rupture conditions. It turns out that the parameters which determine the occurrence of seismic activity along the microplate boundaries are more strictly constrained in the presence of a viscoelastic asthenosphere than in the case of an elastic half‐pace model.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/882325
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? ND
social impact