: An integrative approach based on microfluidic design and stem cell biology enables capture of the spatial-temporal environmental evolution underpinning epigenetic remodeling and the morphogenetic process. We examine the body of literature that encompasses microfluidic applications where human induced pluripotent stem cells are derived starting from human somatic cells and where human pluripotent stem cells are differentiated into different cell types. We focus on recent studies where the intrinsic features of microfluidics have been exploited to control the reprogramming and differentiation trajectory at the microscale, including the capability of manipulating the fluid velocity field, mass transport regime, and controllable composition within micro- to nanoliter volumes in space and time. We also discuss studies of emerging microfluidic technologies and applications. Finally, we critically discuss perspectives and challenges in the field and how these could be instrumental for bringing about significant biological advances in the field of stem cell engineering. Expected final online publication date for the Annual Review of Biomedical Engineering, Volume 24 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Luni, C., Gagliano, O., Elvassore, N. (2022). Derivation and Differentiation of Human Pluripotent Stem Cells in Microfluidic Devices. ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, 24(1), 229-246 [10.1146/annurev-bioeng-092021-042744].
Derivation and Differentiation of Human Pluripotent Stem Cells in Microfluidic Devices
Luni, CamillaPrimo
;
2022
Abstract
: An integrative approach based on microfluidic design and stem cell biology enables capture of the spatial-temporal environmental evolution underpinning epigenetic remodeling and the morphogenetic process. We examine the body of literature that encompasses microfluidic applications where human induced pluripotent stem cells are derived starting from human somatic cells and where human pluripotent stem cells are differentiated into different cell types. We focus on recent studies where the intrinsic features of microfluidics have been exploited to control the reprogramming and differentiation trajectory at the microscale, including the capability of manipulating the fluid velocity field, mass transport regime, and controllable composition within micro- to nanoliter volumes in space and time. We also discuss studies of emerging microfluidic technologies and applications. Finally, we critically discuss perspectives and challenges in the field and how these could be instrumental for bringing about significant biological advances in the field of stem cell engineering. Expected final online publication date for the Annual Review of Biomedical Engineering, Volume 24 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.