We extend to a Engel type structure a cortically inspired model of perceptual completion initially proposed in the Lie group of positions and orientations with a sub-Riemannian metric. According to this model, a given image is lifted in the group and completed by a minimal surface. The main obstacle in extending the model to a higher dimensional group, which can code also curvatures, is the lack of a good definition of codimension 2 minimal surface. We present here this notion, and describe an application to image completion.
Submanifolds of Fixed Degree in Graded Manifolds for Perceptual Completion
Citti G.;
2021
Abstract
We extend to a Engel type structure a cortically inspired model of perceptual completion initially proposed in the Lie group of positions and orientations with a sub-Riemannian metric. According to this model, a given image is lifted in the group and completed by a minimal surface. The main obstacle in extending the model to a higher dimensional group, which can code also curvatures, is the lack of a good definition of codimension 2 minimal surface. We present here this notion, and describe an application to image completion.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
CGRS2.pdf
accesso aperto
Tipo:
Postprint
Licenza:
Licenza per accesso libero gratuito
Dimensione
2 MB
Formato
Adobe PDF
|
2 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.