A model is proposed to study the modification of the stress field at a transcurrent plate boundary due to factional heat production at depth. Two cases are considered: a stable and a stretched lithosphere. The model is applied to those weak faults where the dynamic friction is small compared to a static one: if the deformation along the brittle portion of the fault is entirely accommodated by a series of seismic ruptures in a quasi-static state where the fault has been moving for millions of years, the long-term thermal field perturbation due to these ruptures results in only a few degrees and can be neglected. The boundary zone is considered as a viscoelastic body subject to a constant strain rate. The lower section of the boundary is assumed to slip aseismically along a vertical transcurrent fault and to completely accommodate the plate motion, while the upper section is locked. The slipping zone is divided into a semi-brittle zone, placed between the isothermal surfaces of 300°C and 45o°C, and a ductile zone beneath. The frictional heat is calculated by assuming a linearly decreasing friction in the semi-brittle and a constant friction in the ductile zones. The heat modifies the temperature field, producing an upward movement of the semi-brittle and ductile fault sections. As a consequence, the thickness of the brittle fault section is reduced and friction at the base of this section is less. The stress field in the boundary zone is calculated as a function of time for different faction profiles and slip rates on the fault. Owing to heat production, a greater stress concentration is produced on the brittle fault section, while shear stress is lowered in regions occupied by the uplifted semi-brittle layer. These effects are found to be remarkable only in the case of a stable zone, with a standard unperturbed geotherm. while they are irrelevant in a stretched zone with a high geothermal gradient. In any case, the role of the semi-brittle layer appears to be more prominent in the case of boundaries with higher slip rates, due to the presence of higher stress values.
Titolo: | Stress field at a transcurrent plate boundary in the presence of frictional heat production at depth | |
Autore/i: | Dragoni M.; Harabaglia P.; Mongelli F. | |
Autore/i Unibo: | ||
Anno: | 1997 | |
Rivista: | ||
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/s000240050072 | |
Abstract: | A model is proposed to study the modification of the stress field at a transcurrent plate boundary due to factional heat production at depth. Two cases are considered: a stable and a stretched lithosphere. The model is applied to those weak faults where the dynamic friction is small compared to a static one: if the deformation along the brittle portion of the fault is entirely accommodated by a series of seismic ruptures in a quasi-static state where the fault has been moving for millions of years, the long-term thermal field perturbation due to these ruptures results in only a few degrees and can be neglected. The boundary zone is considered as a viscoelastic body subject to a constant strain rate. The lower section of the boundary is assumed to slip aseismically along a vertical transcurrent fault and to completely accommodate the plate motion, while the upper section is locked. The slipping zone is divided into a semi-brittle zone, placed between the isothermal surfaces of 300°C and 45o°C, and a ductile zone beneath. The frictional heat is calculated by assuming a linearly decreasing friction in the semi-brittle and a constant friction in the ductile zones. The heat modifies the temperature field, producing an upward movement of the semi-brittle and ductile fault sections. As a consequence, the thickness of the brittle fault section is reduced and friction at the base of this section is less. The stress field in the boundary zone is calculated as a function of time for different faction profiles and slip rates on the fault. Owing to heat production, a greater stress concentration is produced on the brittle fault section, while shear stress is lowered in regions occupied by the uplifted semi-brittle layer. These effects are found to be remarkable only in the case of a stable zone, with a standard unperturbed geotherm. while they are irrelevant in a stretched zone with a high geothermal gradient. In any case, the role of the semi-brittle layer appears to be more prominent in the case of boundaries with higher slip rates, due to the presence of higher stress values. | |
Data stato definitivo: | 2022-04-01T17:53:24Z | |
Appare nelle tipologie: | 1.01 Articolo in rivista |