Let $X=(X_1,X_2,ldots)$ be a sequence of random variables with values in a standard space $(S,mathcal{B})$. Suppose egin{gather*} X_1sim uquad ext{and}quad Pigl(X_{n+1}incdotmid X_1,ldots,X_nigr)=rac{ heta u(cdot)+sum_{i=1}^nK(X_i)(cdot)}{n+ heta}quadquad ext{a.s.} end{gather*} where $ heta>0$ is a constant, $ u$ a probability measure on $mathcal{B}$, and $K$ a random probability measure on $mathcal{B}$. Then, $X$ is exchangeable whenever $K$ is a regular conditional distribution for $ u$ given any sub-$sigma$-field of $mathcal{B}$. Under this assumption, $X$ enjoys all the main properties of classical Dirichlet sequences, including Sethuraman's representation, conjugacy property, and convergence in total variation of predictive distributions. If $mu$ is the weak limit of the empirical measures, conditions for $mu$ to be a.s. discrete, or a.s. non-atomic, or $mull u$ a.s., are provided. Two CLT's are proved as well. The first deals with stable convergence while the second concerns total variation distance.

Berti Patrizia, Dreassi Emanuela, Leisen Fabrizio, Pratelli Luca, Rigo Pietro (2023). Kernel based Dirichlet sequences. BERNOULLI, 29, 1321-1342.

Kernel based Dirichlet sequences

Rigo Pietro
2023

Abstract

Let $X=(X_1,X_2,ldots)$ be a sequence of random variables with values in a standard space $(S,mathcal{B})$. Suppose egin{gather*} X_1sim uquad ext{and}quad Pigl(X_{n+1}incdotmid X_1,ldots,X_nigr)=rac{ heta u(cdot)+sum_{i=1}^nK(X_i)(cdot)}{n+ heta}quadquad ext{a.s.} end{gather*} where $ heta>0$ is a constant, $ u$ a probability measure on $mathcal{B}$, and $K$ a random probability measure on $mathcal{B}$. Then, $X$ is exchangeable whenever $K$ is a regular conditional distribution for $ u$ given any sub-$sigma$-field of $mathcal{B}$. Under this assumption, $X$ enjoys all the main properties of classical Dirichlet sequences, including Sethuraman's representation, conjugacy property, and convergence in total variation of predictive distributions. If $mu$ is the weak limit of the empirical measures, conditions for $mu$ to be a.s. discrete, or a.s. non-atomic, or $mull u$ a.s., are provided. Two CLT's are proved as well. The first deals with stable convergence while the second concerns total variation distance.
2023
Berti Patrizia, Dreassi Emanuela, Leisen Fabrizio, Pratelli Luca, Rigo Pietro (2023). Kernel based Dirichlet sequences. BERNOULLI, 29, 1321-1342.
Berti Patrizia; Dreassi Emanuela; Leisen Fabrizio; Pratelli Luca; Rigo Pietro
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/880585
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact