We provide the first examples of geometric transition from hyperbolic to anti-de Sitter structures in dimension four, in a fashion similar to Danciger’s three-dimensional examples. The main ingredient is a deformation of hyperbolic 4-polytopes, discovered by Kerckhoff and Storm, eventually collapsing to a 3-dimensional ideal cuboctahedron. We show the existence of a similar family of collapsing anti-de Sitter polytopes, and join the two deformations by means of an opportune half-pipe orbifold structure. The desired examples of geometric transition are then obtained by gluing copies of the polytope.

Riolo, S., Seppi, A. (2022). Geometric transition from hyperbolic to anti-de Sitter structures in dimension four. ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA. CLASSE DI SCIENZE, 23(1), 115-176 [10.2422/2036-2145.202005_031].

Geometric transition from hyperbolic to anti-de Sitter structures in dimension four

Riolo, Stefano;
2022

Abstract

We provide the first examples of geometric transition from hyperbolic to anti-de Sitter structures in dimension four, in a fashion similar to Danciger’s three-dimensional examples. The main ingredient is a deformation of hyperbolic 4-polytopes, discovered by Kerckhoff and Storm, eventually collapsing to a 3-dimensional ideal cuboctahedron. We show the existence of a similar family of collapsing anti-de Sitter polytopes, and join the two deformations by means of an opportune half-pipe orbifold structure. The desired examples of geometric transition are then obtained by gluing copies of the polytope.
2022
Riolo, S., Seppi, A. (2022). Geometric transition from hyperbolic to anti-de Sitter structures in dimension four. ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA. CLASSE DI SCIENZE, 23(1), 115-176 [10.2422/2036-2145.202005_031].
Riolo, Stefano; Seppi, Andrea
File in questo prodotto:
File Dimensione Formato  
main.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 1.98 MB
Formato Adobe PDF
1.98 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/880550
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 4
social impact