We provide the first examples of geometric transition from hyperbolic to anti-de Sitter structures in dimension four, in a fashion similar to Danciger’s three-dimensional examples. The main ingredient is a deformation of hyperbolic 4-polytopes, discovered by Kerckhoff and Storm, eventually collapsing to a 3-dimensional ideal cuboctahedron. We show the existence of a similar family of collapsing anti-de Sitter polytopes, and join the two deformations by means of an opportune half-pipe orbifold structure. The desired examples of geometric transition are then obtained by gluing copies of the polytope.
Titolo: | Geometric transition from hyperbolic to anti-de Sitter structures in dimension four | |
Autore/i: | Riolo, Stefano; Seppi, Andrea | |
Autore/i Unibo: | ||
Anno: | 2022 | |
Rivista: | ||
Digital Object Identifier (DOI): | http://dx.doi.org/10.2422/2036-2145.202005_031 | |
Abstract: | We provide the first examples of geometric transition from hyperbolic to anti-de Sitter structures in dimension four, in a fashion similar to Danciger’s three-dimensional examples. The main ingredient is a deformation of hyperbolic 4-polytopes, discovered by Kerckhoff and Storm, eventually collapsing to a 3-dimensional ideal cuboctahedron. We show the existence of a similar family of collapsing anti-de Sitter polytopes, and join the two deformations by means of an opportune half-pipe orbifold structure. The desired examples of geometric transition are then obtained by gluing copies of the polytope. | |
Data stato definitivo: | 2022-03-31T20:41:39Z | |
Appare nelle tipologie: | 1.01 Articolo in rivista |
File in questo prodotto:
Eventuali allegati, non sono esposti
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.