Multiplicative constants are a fundamental tool in the study of maximal representations. In this paper, we show how to extend such notion, and the associated framework, to measurable cocycles theory. As an application of this approach, we define and study the Cartan invariant for measurable PU(m, 1)-cocycles of complex hyperbolic lattices.

Moraschini M., Savini A. (2022). Multiplicative constants and maximal measurable cocycles in bounded cohomology. ERGODIC THEORY & DYNAMICAL SYSTEMS, 42(11), 3490-3525 [10.1017/etds.2021.91].

Multiplicative constants and maximal measurable cocycles in bounded cohomology

Moraschini M.;
2022

Abstract

Multiplicative constants are a fundamental tool in the study of maximal representations. In this paper, we show how to extend such notion, and the associated framework, to measurable cocycles theory. As an application of this approach, we define and study the Cartan invariant for measurable PU(m, 1)-cocycles of complex hyperbolic lattices.
2022
Moraschini M., Savini A. (2022). Multiplicative constants and maximal measurable cocycles in bounded cohomology. ERGODIC THEORY & DYNAMICAL SYSTEMS, 42(11), 3490-3525 [10.1017/etds.2021.91].
Moraschini M.; Savini A.
File in questo prodotto:
File Dimensione Formato  
multiplicative-constants-and-maximal-measurable-cocycles-in-bounded-cohomology.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 518.61 kB
Formato Adobe PDF
518.61 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/880049
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 4
social impact