In this paper we investigate the feasibility of using an SVM (support vector machine) classifier in our automatic system for the detection of clustered microcalcifications in digital mammograms. SVM is a technique for pattern recognition which relies on the statistical learning theory. It minimizes a function of two terms: the number of misclassified vectors of the training set and a term regarding the generalization classifier capability. We compare the SVM classifier with an MLP (multi-layer perceptron) in the false-positive reduction phase of our detection scheme: a detected signal is considered either microcalcification or false signal, according to the value of a set of its features. The SVM classifier gets slightly better results than the MLP one (Az value of 0.963 against 0.958) in the presence of a high number of training data; the improvement becomes much more evident (Az value of 0.952 against 0.918) in training sets of reduced size. Finally, the setting of the SVM classifier is much easier than the MLP one.

Bazzani A., Bevilacqua A., Bollini D., Brancaccio R., Campanini R., Lanconelli N., et al. (2001). An SVM classifier to separate false signals from microcalcifications in digital mammograms. PHYSICS IN MEDICINE AND BIOLOGY, 46(6), 1651-1663 [10.1088/0031-9155/46/6/305].

An SVM classifier to separate false signals from microcalcifications in digital mammograms

Bazzani A.;Bevilacqua A.;Bollini D.;Brancaccio R.;Campanini R.;Lanconelli N.;
2001

Abstract

In this paper we investigate the feasibility of using an SVM (support vector machine) classifier in our automatic system for the detection of clustered microcalcifications in digital mammograms. SVM is a technique for pattern recognition which relies on the statistical learning theory. It minimizes a function of two terms: the number of misclassified vectors of the training set and a term regarding the generalization classifier capability. We compare the SVM classifier with an MLP (multi-layer perceptron) in the false-positive reduction phase of our detection scheme: a detected signal is considered either microcalcification or false signal, according to the value of a set of its features. The SVM classifier gets slightly better results than the MLP one (Az value of 0.963 against 0.958) in the presence of a high number of training data; the improvement becomes much more evident (Az value of 0.952 against 0.918) in training sets of reduced size. Finally, the setting of the SVM classifier is much easier than the MLP one.
2001
Bazzani A., Bevilacqua A., Bollini D., Brancaccio R., Campanini R., Lanconelli N., et al. (2001). An SVM classifier to separate false signals from microcalcifications in digital mammograms. PHYSICS IN MEDICINE AND BIOLOGY, 46(6), 1651-1663 [10.1088/0031-9155/46/6/305].
Bazzani A.; Bevilacqua A.; Bollini D.; Brancaccio R.; Campanini R.; Lanconelli N.; Riccardi A.; Romani D.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/879819
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 91
  • ???jsp.display-item.citation.isi??? 77
social impact