The conjugate gradient method is one of the most popular iterative methods for computing approximate solutions of linear systems of equations with a symmetric positive definite matrix A. It is generally desirable to terminate the iterations as soon as a sufficiently accurate approximate solution has been computed. This paper discusses known and new methods for computing bounds or estimates of the A-norm of the error in the approximate solutions generated by the conjugate gradient method.

Computable error bounds and estimates for the conjugate gradient method

Morigi S.;Reichel L.;Sgallari F.
2000

Abstract

The conjugate gradient method is one of the most popular iterative methods for computing approximate solutions of linear systems of equations with a symmetric positive definite matrix A. It is generally desirable to terminate the iterations as soon as a sufficiently accurate approximate solution has been computed. This paper discusses known and new methods for computing bounds or estimates of the A-norm of the error in the approximate solutions generated by the conjugate gradient method.
Calvetti D.; Morigi S.; Reichel L.; Sgallari F.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/879675
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 18
social impact