The development of semiconductor polymers for electronic applications requires tailored synthetic strategies to obtain materials with tunable electronic properties and morphology to enhance their properties. Towards this goal, here is reported the expedient synthesis of a novel class of thiophene-based electrochromic polymers, processable in organic solvents and as nanoparticles (NPs) in water. Their characterization and application in flexible solid-state electrochromic devices (ECDs) are described. All polymers have a repeat unit made of the same linear thienyl–phenyl–thienyl–thienyl fragment. The tuning of the electro-optical properties is achieved by introducing alkyl or alkoxy substituents in thiophene and/or by the presence of either -CH-CH- or -CH2-CH2- linkers connecting the repeat units and acting as conjugation modulators. The ECDs display a bright yellow or red/magenta color in the neutral state and dark blue in the oxidized state. Redox potentials, color contrast, switching time, and stability of the devices are reported, and it is demonstrated that the use of NPs films spray-coated from water instead of cast films from chloroform significantly improves their performance. Density functional theory calculations allow to elucidate the relationship between polymer structure and electrochromic properties and shed light on electronic structure changes upon oxidation, in agreement with spectroelectrochemistry.

Moreira T., Maria F.D., Zangoli M., Fabiano E., Manet I., Mazzaro R., et al. (2021). Processable Thiophene-Based Polymers with Tailored Electronic Properties and their Application in Solid-State Electrochromic Devices Using Nanoparticle Films. ADVANCED ELECTRONIC MATERIALS, 7(7), 1-12 [10.1002/aelm.202100166].

Processable Thiophene-Based Polymers with Tailored Electronic Properties and their Application in Solid-State Electrochromic Devices Using Nanoparticle Films

Mazzaro R.;Morandi V.;
2021

Abstract

The development of semiconductor polymers for electronic applications requires tailored synthetic strategies to obtain materials with tunable electronic properties and morphology to enhance their properties. Towards this goal, here is reported the expedient synthesis of a novel class of thiophene-based electrochromic polymers, processable in organic solvents and as nanoparticles (NPs) in water. Their characterization and application in flexible solid-state electrochromic devices (ECDs) are described. All polymers have a repeat unit made of the same linear thienyl–phenyl–thienyl–thienyl fragment. The tuning of the electro-optical properties is achieved by introducing alkyl or alkoxy substituents in thiophene and/or by the presence of either -CH-CH- or -CH2-CH2- linkers connecting the repeat units and acting as conjugation modulators. The ECDs display a bright yellow or red/magenta color in the neutral state and dark blue in the oxidized state. Redox potentials, color contrast, switching time, and stability of the devices are reported, and it is demonstrated that the use of NPs films spray-coated from water instead of cast films from chloroform significantly improves their performance. Density functional theory calculations allow to elucidate the relationship between polymer structure and electrochromic properties and shed light on electronic structure changes upon oxidation, in agreement with spectroelectrochemistry.
2021
Moreira T., Maria F.D., Zangoli M., Fabiano E., Manet I., Mazzaro R., et al. (2021). Processable Thiophene-Based Polymers with Tailored Electronic Properties and their Application in Solid-State Electrochromic Devices Using Nanoparticle Films. ADVANCED ELECTRONIC MATERIALS, 7(7), 1-12 [10.1002/aelm.202100166].
Moreira T.; Maria F.D.; Zangoli M.; Fabiano E.; Manet I.; Mazzaro R.; Morandi V.; Marinelli M.; Gigli G.; Parola A.J.; Laia C.A.T.; Barbarella G....espandi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/879497
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact