Nickel oxide (NiO) nanostructures are employed in the basic medium for the oxidation of ethanol. A variety of NiO nanostructures are synthesized by wet chemical growth method, using different hydroxide (OH−) ion sources, particularly from ammonia, hexamethylenetetramine, urea and sodium hydroxide. The use of urea as (OH−) ion source results in flower-like NiO structures composed by extremely thin nanowalls (thickness lower than 10 nm,), which demonstrated to be the most active for ethanol oxidation. All the samples exhibit NiO cubic phase, and no other impurity was detected. The cyclic voltammetry (CV) curves of NiO nanostructures were found linear over the concentration range 0.1–3.5 mM (R2=0.99) of ethanol, with the limit of detection estimated to be 0.013 mM for ethanol. The NiO nanostructures exhibit a selective signal towards ethanol oxidation in the presence of different members of alcohol family. The proposed NiO nanostructures showed a significant practicality for the reproducible and sensitive determination of ethanol from brandy, whisky, mixture of brandy and rum, and vodka samples. The nanomaterial was used as a surface modifying agent for the glassy carbon electrode and it showed a stable electro-oxidation activity for the ethanol for 16 days. These findings indicate that the presented NiO nanomaterial can be applied in place of noble metals for ethanol sensing and other environmental applications (like fuel cells).

Amin S., Tahira A., Solangi A.R., Mazzaro R., Ibupoto Z.H., Fatima A., et al. (2020). Functional Nickel Oxide Nanostructures for Ethanol Oxidation in Alkaline Media. ELECTROANALYSIS, 32(5), 1052-1059 [10.1002/elan.201900662].

Functional Nickel Oxide Nanostructures for Ethanol Oxidation in Alkaline Media

Mazzaro R.;
2020

Abstract

Nickel oxide (NiO) nanostructures are employed in the basic medium for the oxidation of ethanol. A variety of NiO nanostructures are synthesized by wet chemical growth method, using different hydroxide (OH−) ion sources, particularly from ammonia, hexamethylenetetramine, urea and sodium hydroxide. The use of urea as (OH−) ion source results in flower-like NiO structures composed by extremely thin nanowalls (thickness lower than 10 nm,), which demonstrated to be the most active for ethanol oxidation. All the samples exhibit NiO cubic phase, and no other impurity was detected. The cyclic voltammetry (CV) curves of NiO nanostructures were found linear over the concentration range 0.1–3.5 mM (R2=0.99) of ethanol, with the limit of detection estimated to be 0.013 mM for ethanol. The NiO nanostructures exhibit a selective signal towards ethanol oxidation in the presence of different members of alcohol family. The proposed NiO nanostructures showed a significant practicality for the reproducible and sensitive determination of ethanol from brandy, whisky, mixture of brandy and rum, and vodka samples. The nanomaterial was used as a surface modifying agent for the glassy carbon electrode and it showed a stable electro-oxidation activity for the ethanol for 16 days. These findings indicate that the presented NiO nanomaterial can be applied in place of noble metals for ethanol sensing and other environmental applications (like fuel cells).
2020
Amin S., Tahira A., Solangi A.R., Mazzaro R., Ibupoto Z.H., Fatima A., et al. (2020). Functional Nickel Oxide Nanostructures for Ethanol Oxidation in Alkaline Media. ELECTROANALYSIS, 32(5), 1052-1059 [10.1002/elan.201900662].
Amin S.; Tahira A.; Solangi A.R.; Mazzaro R.; Ibupoto Z.H.; Fatima A.; Vomiero A.
File in questo prodotto:
File Dimensione Formato  
Amin et al. - 2020 - Functional Nickel Oxide Nanostructures for Ethanol Oxidation in Alkaline Media.pdf

accesso riservato

Tipo: Versione (PDF) editoriale
Licenza: Licenza per accesso riservato
Dimensione 2.64 MB
Formato Adobe PDF
2.64 MB Adobe PDF   Visualizza/Apri   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/879482
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 24
social impact