We develop a systematic study of the superpositions of elliptic operators with different orders, mixing classical and fractional scenarios. For concreteness, we focus on the sum of the Laplacian and the fractional Laplacian, and we provide structural results, including existence, maximum principles (both for weak and classical solutions), interior Sobolev regularity and boundary regularity of Lipschitz type.

Mixed local and nonlocal elliptic operators: regularity and maximum principles

Vecchi E.
2022

Abstract

We develop a systematic study of the superpositions of elliptic operators with different orders, mixing classical and fractional scenarios. For concreteness, we focus on the sum of the Laplacian and the fractional Laplacian, and we provide structural results, including existence, maximum principles (both for weak and classical solutions), interior Sobolev regularity and boundary regularity of Lipschitz type.
2022
Biagi S.; Dipierro S.; Valdinoci E.; Vecchi E.
File in questo prodotto:
File Dimensione Formato  
main.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale (CCBYNC)
Dimensione 1.32 MB
Formato Adobe PDF
1.32 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/879388
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 49
  • ???jsp.display-item.citation.isi??? 45
social impact