Luminescent solar concentrators (LSCs) have received significant attention because of their low cost, large-area and high efficiency sunlight energy harvesting. Colloidal core/shell quantum dots (QDs) are promising candidates as absorbers/emitters in LSCs. However, due to the limitation of QDs properties and device architectures, LSCs fabricated using QDs still face the challenges of low optical efficiency and limited long-term stability for the large-area LSCs. In this work, we synthesized CdSe/CdS QDs, and found that higher CdS shell growth temperature results in improved uniformity in structure and morphology and more suitable optical properties. Based on the CdSe/CdS QDs, a large-area (∼100 cm 2 ) sandwich structure luminescent solar concentrator (LSC) was fabricated. By laminating the QDs layer between two sheets of optical clear glass, the reabsorption losses of the device can be reduced due to the decrease of photon escape. The as-fabricated sandwich structure device exhibits an external optical efficiency of ∼ 2.95% under natural sunlight illumination, which represents a 78% enhancement in efficiency over the single layer film LSCs based on CdSe/CdS QDs. More importantly, the sandwich structure can protect the QDs interlayer from the impact of the ambient environment (e.g. oxygen, moisture and alkalinity) and enhance the long-term stability of LSCs. Our work shows that the use of suitably tuned core-shell QDs and the sandwich structure in LSC architecture can dramatically enhance the external optical efficiency of LSC devices based on CdSe/CdS QDs.
Liu G., Mazzaro R., Wang Y., Zhao H., Vomiero A. (2019). High efficiency sandwich structure luminescent solar concentrators based on colloidal quantum dots. NANO ENERGY, 60, 119-126 [10.1016/j.nanoen.2019.03.038].
High efficiency sandwich structure luminescent solar concentrators based on colloidal quantum dots
Mazzaro R.;
2019
Abstract
Luminescent solar concentrators (LSCs) have received significant attention because of their low cost, large-area and high efficiency sunlight energy harvesting. Colloidal core/shell quantum dots (QDs) are promising candidates as absorbers/emitters in LSCs. However, due to the limitation of QDs properties and device architectures, LSCs fabricated using QDs still face the challenges of low optical efficiency and limited long-term stability for the large-area LSCs. In this work, we synthesized CdSe/CdS QDs, and found that higher CdS shell growth temperature results in improved uniformity in structure and morphology and more suitable optical properties. Based on the CdSe/CdS QDs, a large-area (∼100 cm 2 ) sandwich structure luminescent solar concentrator (LSC) was fabricated. By laminating the QDs layer between two sheets of optical clear glass, the reabsorption losses of the device can be reduced due to the decrease of photon escape. The as-fabricated sandwich structure device exhibits an external optical efficiency of ∼ 2.95% under natural sunlight illumination, which represents a 78% enhancement in efficiency over the single layer film LSCs based on CdSe/CdS QDs. More importantly, the sandwich structure can protect the QDs interlayer from the impact of the ambient environment (e.g. oxygen, moisture and alkalinity) and enhance the long-term stability of LSCs. Our work shows that the use of suitably tuned core-shell QDs and the sandwich structure in LSC architecture can dramatically enhance the external optical efficiency of LSC devices based on CdSe/CdS QDs.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.