The recent burst of research on smart materials is a clear evidence of the growing interest of the scientific community, industry, and society in the field. The exploitation of the great potential of stimuli-responsive materials for sensing, actuation, logic, and control applications is favored and supported by new manufacturing technologies, such as electrospinning, that allows to endow smart materials with micro- and nanostructuration, thus opening up additional and unprecedented prospects. In this wide and lively scenario, this article systematically reviews the current advances in the development of thermoactive electrospun fibers and textiles, sorting them, according to their response to the thermal stimulus. Hence, several platforms including thermoresponsive systems, shape memory polymers, thermo-optically responsive systems, phase change materials, thermoelectric materials, and pyroelectric materials, are described and critically discussed. The difference in active species and outputs of the aforementioned categories is highlighted, evidencing the transversal nature of temperature stimulus. Moreover, the potential of novel thermoactive materials are pointed out, revealing how their development could take to utmost interesting achievements.
Liguori A., Pandini S., Rinoldi C., Zaccheroni N., Pierini F., Focarete M.L., et al. (2022). Thermoactive Smart Electrospun Nanofibers. MACROMOLECULAR RAPID COMMUNICATIONS, 43(5), 1-35 [10.1002/marc.202100694].
Thermoactive Smart Electrospun Nanofibers
Liguori A.;Zaccheroni N.;Focarete M. L.;Gualandi C.
2022
Abstract
The recent burst of research on smart materials is a clear evidence of the growing interest of the scientific community, industry, and society in the field. The exploitation of the great potential of stimuli-responsive materials for sensing, actuation, logic, and control applications is favored and supported by new manufacturing technologies, such as electrospinning, that allows to endow smart materials with micro- and nanostructuration, thus opening up additional and unprecedented prospects. In this wide and lively scenario, this article systematically reviews the current advances in the development of thermoactive electrospun fibers and textiles, sorting them, according to their response to the thermal stimulus. Hence, several platforms including thermoresponsive systems, shape memory polymers, thermo-optically responsive systems, phase change materials, thermoelectric materials, and pyroelectric materials, are described and critically discussed. The difference in active species and outputs of the aforementioned categories is highlighted, evidencing the transversal nature of temperature stimulus. Moreover, the potential of novel thermoactive materials are pointed out, revealing how their development could take to utmost interesting achievements.File | Dimensione | Formato | |
---|---|---|---|
2022 Macrom Rapid Comm ID2100694.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
9.78 MB
Formato
Adobe PDF
|
9.78 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.