Well-established advantages as design freedom, acceleration of design-to-manufacturing cycle, decreased internal logistics reflect on the wider application of Additive Manufacturing as the main manufacturing process. However, its application to large-scale components manufacturing is still an open challenge, because of the limited printing volume available in off-the-shelf machines, slow manufacturing process, and low production volume. After a review of the available contributions, this paper proposes a methodology to handle large-scale 3D models, to be applied before the slicing process. The methodology is based upon the large-scale component subdivision into subparts within CAD environments, using an innovative approach tailored to the problem, and exploits the multi-head capability of collaborative large-scale AM machines. A UAV fixed-wing shows the positive effects in terms of speeding up the manufacturing process. The approach can significantly reduce the printing time of large parts, but a new generation of Additive Manufacturing machines is required to exploit the methodology.

Towards Large Parts Manufacturing in Additive Technologies for Aerospace and Automotive applications / Bacciaglia, Antonio; Ceruti, Alessandro; Liverani, Alfredo. - In: PROCEDIA COMPUTER SCIENCE. - ISSN 1877-0509. - ELETTRONICO. - 200:(2022), pp. 1113-1124. (Intervento presentato al convegno 3rd International Conference on Industry 4.0 and Smart Manufacturing ISM2021 tenutosi a Linz, Austria nel 17-19 November 2021) [10.1016/j.procs.2022.01.311].

Towards Large Parts Manufacturing in Additive Technologies for Aerospace and Automotive applications

Bacciaglia, Antonio
Primo
Software
;
Ceruti, Alessandro
Secondo
Writing – Review & Editing
;
Liverani, Alfredo
Ultimo
Supervision
2022

Abstract

Well-established advantages as design freedom, acceleration of design-to-manufacturing cycle, decreased internal logistics reflect on the wider application of Additive Manufacturing as the main manufacturing process. However, its application to large-scale components manufacturing is still an open challenge, because of the limited printing volume available in off-the-shelf machines, slow manufacturing process, and low production volume. After a review of the available contributions, this paper proposes a methodology to handle large-scale 3D models, to be applied before the slicing process. The methodology is based upon the large-scale component subdivision into subparts within CAD environments, using an innovative approach tailored to the problem, and exploits the multi-head capability of collaborative large-scale AM machines. A UAV fixed-wing shows the positive effects in terms of speeding up the manufacturing process. The approach can significantly reduce the printing time of large parts, but a new generation of Additive Manufacturing machines is required to exploit the methodology.
2022
3rd International Conference on Industry 4.0 and Smart Manufacturing
1113
1124
Towards Large Parts Manufacturing in Additive Technologies for Aerospace and Automotive applications / Bacciaglia, Antonio; Ceruti, Alessandro; Liverani, Alfredo. - In: PROCEDIA COMPUTER SCIENCE. - ISSN 1877-0509. - ELETTRONICO. - 200:(2022), pp. 1113-1124. (Intervento presentato al convegno 3rd International Conference on Industry 4.0 and Smart Manufacturing ISM2021 tenutosi a Linz, Austria nel 17-19 November 2021) [10.1016/j.procs.2022.01.311].
Bacciaglia, Antonio; Ceruti, Alessandro; Liverani, Alfredo
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/878465
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 12
social impact