In this study, the temperature-dependent activity of Au/AC nanocatalysts in redox catalytic reactions was investigated. To this end, a series of colloidal gold catalysts supported on activated carbon and titania were prepared by the sol immobilization method employing polyvinyl alcohol as a polymeric stabilizer at different hydrolysis degrees. The as-synthesized materials were widely characterized by spectroscopic analysis (XPS, XRD, and ATR-IR) as well as TEM microscopy and DLS/ELS measurements. Furthermore, 5-hydroxymethylfurfural (HMF) oxidation and 4-nitrophenol (4-NP) reduction were chosen to investigate the catalytic activity as a model reaction for biomass valorization and wastewater remediation. In particular, by fitting the hydrolysis degree with the kinetic data, volcano plots were obtained for both reactions, in which the maximum of the curves was represented relative to hydrolysis intermediate values. However, a comparison of the catalytic performance of the sample Au/AC_PVA-99 (hydrolysis degree of the polymer is 99%) in the two reactions showed a different catalytic behavior, probably due to the detachment of polymer derived from the different reaction temperature chosen between the two reactions. For this reason, several tests were carried out to investigate deeper the observed catalytic trend, focusing on studying the effect of the reaction temperature as well as the effect of support (metal–support interaction) by immobilizing Au colloidal nanoparticles on commercial titania. The kinetic data, combined with the characterization carried out on the catalysts, confirmed that changing the reaction conditions, the PVA behavior on the surface of the catalysts, and, therefore, the reaction outcome, is modified.

Scurti, S., Allegri, A., Liuzzi, F., Rodríguez-Aguado, E., Cecilia, J.A., Albonetti, S., et al. (2022). Temperature-Dependent Activity of Gold Nanocatalysts Supported on Activated Carbon in Redox Catalytic Reactions: 5-Hydroxymethylfurfural Oxidation and 4-Nitrophenol Reduction Comparison. CATALYSTS, 12(3), 1-19 [10.3390/catal12030323].

Temperature-Dependent Activity of Gold Nanocatalysts Supported on Activated Carbon in Redox Catalytic Reactions: 5-Hydroxymethylfurfural Oxidation and 4-Nitrophenol Reduction Comparison

Scurti, Stefano;Allegri, Alessandro;Liuzzi, Francesca;Albonetti, Stefania;Caretti, Daniele;Dimitratos, Nikolaos
2022

Abstract

In this study, the temperature-dependent activity of Au/AC nanocatalysts in redox catalytic reactions was investigated. To this end, a series of colloidal gold catalysts supported on activated carbon and titania were prepared by the sol immobilization method employing polyvinyl alcohol as a polymeric stabilizer at different hydrolysis degrees. The as-synthesized materials were widely characterized by spectroscopic analysis (XPS, XRD, and ATR-IR) as well as TEM microscopy and DLS/ELS measurements. Furthermore, 5-hydroxymethylfurfural (HMF) oxidation and 4-nitrophenol (4-NP) reduction were chosen to investigate the catalytic activity as a model reaction for biomass valorization and wastewater remediation. In particular, by fitting the hydrolysis degree with the kinetic data, volcano plots were obtained for both reactions, in which the maximum of the curves was represented relative to hydrolysis intermediate values. However, a comparison of the catalytic performance of the sample Au/AC_PVA-99 (hydrolysis degree of the polymer is 99%) in the two reactions showed a different catalytic behavior, probably due to the detachment of polymer derived from the different reaction temperature chosen between the two reactions. For this reason, several tests were carried out to investigate deeper the observed catalytic trend, focusing on studying the effect of the reaction temperature as well as the effect of support (metal–support interaction) by immobilizing Au colloidal nanoparticles on commercial titania. The kinetic data, combined with the characterization carried out on the catalysts, confirmed that changing the reaction conditions, the PVA behavior on the surface of the catalysts, and, therefore, the reaction outcome, is modified.
2022
Scurti, S., Allegri, A., Liuzzi, F., Rodríguez-Aguado, E., Cecilia, J.A., Albonetti, S., et al. (2022). Temperature-Dependent Activity of Gold Nanocatalysts Supported on Activated Carbon in Redox Catalytic Reactions: 5-Hydroxymethylfurfural Oxidation and 4-Nitrophenol Reduction Comparison. CATALYSTS, 12(3), 1-19 [10.3390/catal12030323].
Scurti, Stefano; Allegri, Alessandro; Liuzzi, Francesca; Rodríguez-Aguado, Elena; Cecilia, Juan Antonio; Albonetti, Stefania; Caretti, Daniele; Dimitr...espandi
File in questo prodotto:
File Dimensione Formato  
catalysts-12-00323.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 5.51 MB
Formato Adobe PDF
5.51 MB Adobe PDF Visualizza/Apri
catalysts-1610233-supplementary.pdf

accesso aperto

Tipo: File Supplementare
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 734.24 kB
Formato Adobe PDF
734.24 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/878265
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact