An optimal shape control problem for the stationary Navier-Stokes system is considered. An incompressible, viscous flow in a two-dimensional channel is studied to determine the shape of part of the boundary that minimizes the viscous drag. The adjoint method and the Lagrangian multiplier method are used to derive the optimality system for the shape gradient of the design functional.

Gunzburger M.D., Hongchul K., Manservisi S. (2000). On a shape control problem for the stationary Navier-Stokes equations. MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE, 34(6), 1233-1258 [10.1051/m2an:2000125].

On a shape control problem for the stationary Navier-Stokes equations

Manservisi S.
2000

Abstract

An optimal shape control problem for the stationary Navier-Stokes system is considered. An incompressible, viscous flow in a two-dimensional channel is studied to determine the shape of part of the boundary that minimizes the viscous drag. The adjoint method and the Lagrangian multiplier method are used to derive the optimality system for the shape gradient of the design functional.
2000
Gunzburger M.D., Hongchul K., Manservisi S. (2000). On a shape control problem for the stationary Navier-Stokes equations. MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE, 34(6), 1233-1258 [10.1051/m2an:2000125].
Gunzburger M.D.; Hongchul K.; Manservisi S.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/877162
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 28
social impact