Transfer learning through large pre-trained models has changed the landscape of current applications in natural language processing (NLP). Recently Optimus, a variational autoencoder (VAE) which combines two pre-trained models, BERT and GPT-2, has been released, and its combination with generative adversarial networks (GANs) has been shown to produce novel, yet very human-looking text. The Optimus and GANs combination avoids the troublesome application of GANs to the discrete domain of text, and prevents the exposure bias of standard maximum likelihood methods. We combine the training of GANs in the latent space, with the finetuning of the decoder of Optimus for single word generation. This approach lets us model both the high-level features of the sentences, and the low-level word-by-word generation. We finetune using reinforcement learning (RL) by exploiting the structure of GPT-2 and by adding entropy-based intrinsically motivated rewards to balance between quality and diversity. We benchmark the results of the VAE-GAN model, and show the improvements brought by our RL finetuning on three widely used datasets for text generation, with results that greatly surpass the current state-of-the-art for the quality of the generated texts.
Tirotta, P., Lodi, S. (2021). OptAGAN: Entropy-based finetuning on text VAE-GAN. Chennai, Tamil Nadu : AIRCC Publishing Corporation [10.5121/csit.2021.112303].
OptAGAN: Entropy-based finetuning on text VAE-GAN
Stefano LodiSecondo
Membro del Collaboration Group
2021
Abstract
Transfer learning through large pre-trained models has changed the landscape of current applications in natural language processing (NLP). Recently Optimus, a variational autoencoder (VAE) which combines two pre-trained models, BERT and GPT-2, has been released, and its combination with generative adversarial networks (GANs) has been shown to produce novel, yet very human-looking text. The Optimus and GANs combination avoids the troublesome application of GANs to the discrete domain of text, and prevents the exposure bias of standard maximum likelihood methods. We combine the training of GANs in the latent space, with the finetuning of the decoder of Optimus for single word generation. This approach lets us model both the high-level features of the sentences, and the low-level word-by-word generation. We finetune using reinforcement learning (RL) by exploiting the structure of GPT-2 and by adding entropy-based intrinsically motivated rewards to balance between quality and diversity. We benchmark the results of the VAE-GAN model, and show the improvements brought by our RL finetuning on three widely used datasets for text generation, with results that greatly surpass the current state-of-the-art for the quality of the generated texts.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.