We report a new chemical method for the functionalization of Mg-hydroxyapatite (Mg-HA) scaffold with Ag nanoparticles (Ag NPs) integrating in one step both the synthesis of the Ag NPs and their nano-structuring into the HA matrix (Ag-Mg-HA scaffold). This method exploits a green photochemical synthesis and allows the direct growth of Ag NPs on the Mg-HA surface. The surface structure of Ag-Mg-HA scaffold, investigated by scanning electron microscopy, shows no significant changes in the morphology upon Ag NPs incorporation. The presence of Ag was confirmed by EDX analysis. TEM and spectroscopic investigations show Ag NPs spherical shaped with a mean diameter of about 20 nm exhibiting the typical plasmon absorption band with maximum at 420 nm. The antibacterial properties of Ag-Mg-HA scaffolds were tested against two bacterial strains, Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The results show excellent antibacterial properties achieving up to 99% and 100% reduction of colonies for both bacteria cultures after 24 h of incubation and 100% of reduction after 48 h of incubation. The cytotoxicity of Ag-Mg-HA was also in deep investigated assessing both cell proliferation and differentiation using hADSCs (human Adipose Derived Stem Cells) and testing data point at 0, 7, 14 and 24 days. The results show cytotoxic effect with cell proliferation decreasing up to 90% at 24 days and osteogenic differentiation inhibition. The observed cytotoxicity can be probable ascribed to the oxidative stress by ROS. Indeed, considering the effectiveness of the nanofunctionalization method and the excellent antibacterial properties showed by the Ag-Mg-HA scaffold, future works will be devoted to create nanofunctionalized scaffold satisfying both antimicrobial and osteo-regenerative properties.

Calabrese G., Petralia S., Franco D., Nocito G., Fabbi C., Forte L., et al. (2021). A new Ag-nanostructured hydroxyapatite porous scaffold: Antibacterial effect and cytotoxicity study. MATERIALS SCIENCE AND ENGINEERING. C, BIOMIMETIC MATERIALS, SENSORS AND SYSTEMS, 118, 111394-111400 [10.1016/j.msec.2020.111394].

A new Ag-nanostructured hydroxyapatite porous scaffold: Antibacterial effect and cytotoxicity study

Nocito G.;Fabbi C.;Forte L.;Traina F.;Conoci S.
2021

Abstract

We report a new chemical method for the functionalization of Mg-hydroxyapatite (Mg-HA) scaffold with Ag nanoparticles (Ag NPs) integrating in one step both the synthesis of the Ag NPs and their nano-structuring into the HA matrix (Ag-Mg-HA scaffold). This method exploits a green photochemical synthesis and allows the direct growth of Ag NPs on the Mg-HA surface. The surface structure of Ag-Mg-HA scaffold, investigated by scanning electron microscopy, shows no significant changes in the morphology upon Ag NPs incorporation. The presence of Ag was confirmed by EDX analysis. TEM and spectroscopic investigations show Ag NPs spherical shaped with a mean diameter of about 20 nm exhibiting the typical plasmon absorption band with maximum at 420 nm. The antibacterial properties of Ag-Mg-HA scaffolds were tested against two bacterial strains, Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The results show excellent antibacterial properties achieving up to 99% and 100% reduction of colonies for both bacteria cultures after 24 h of incubation and 100% of reduction after 48 h of incubation. The cytotoxicity of Ag-Mg-HA was also in deep investigated assessing both cell proliferation and differentiation using hADSCs (human Adipose Derived Stem Cells) and testing data point at 0, 7, 14 and 24 days. The results show cytotoxic effect with cell proliferation decreasing up to 90% at 24 days and osteogenic differentiation inhibition. The observed cytotoxicity can be probable ascribed to the oxidative stress by ROS. Indeed, considering the effectiveness of the nanofunctionalization method and the excellent antibacterial properties showed by the Ag-Mg-HA scaffold, future works will be devoted to create nanofunctionalized scaffold satisfying both antimicrobial and osteo-regenerative properties.
2021
Calabrese G., Petralia S., Franco D., Nocito G., Fabbi C., Forte L., et al. (2021). A new Ag-nanostructured hydroxyapatite porous scaffold: Antibacterial effect and cytotoxicity study. MATERIALS SCIENCE AND ENGINEERING. C, BIOMIMETIC MATERIALS, SENSORS AND SYSTEMS, 118, 111394-111400 [10.1016/j.msec.2020.111394].
Calabrese G.; Petralia S.; Franco D.; Nocito G.; Fabbi C.; Forte L.; Guglielmino S.; Squarzoni S.; Traina F.; Conoci S.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/876273
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 27
  • Scopus 70
  • ???jsp.display-item.citation.isi??? 64
social impact