High-performance Computing (HPC) systems have become essential instruments in our modern society. As they get closer to exascale performance, HPC systems become larger in size and more heterogeneous in their computing resources. With recent advances in AI, HPC systems are also increasingly being used for applications that employ many short jobs with strict timing requirements. HPC job dispatchers need to therefore adopt techniques to go beyond the capabilities of those developed for small or homogeneous systems, or for traditional compute-intensive applications. In this paper, we present a job dispatcher suitable for today's large and heterogeneous systems running modern applications. Unlike its predecessors, our dispatcher solves the entire dispatching problem using Constraint Programming (CP) with a model size independent of the system size. Experimental results based on a simulation study show that our approach can bring about significant performance gains over the existing CP-based dispatchers in a large or heterogeneous system.

Galleguillos C., Kiziltan Z., Soto R. (2021). A job dispatcher for large and heterogeneous HPC systems running modern applications. Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing [10.4230/LIPIcs.CP.2021.26].

A job dispatcher for large and heterogeneous HPC systems running modern applications

Kiziltan Z.;
2021

Abstract

High-performance Computing (HPC) systems have become essential instruments in our modern society. As they get closer to exascale performance, HPC systems become larger in size and more heterogeneous in their computing resources. With recent advances in AI, HPC systems are also increasingly being used for applications that employ many short jobs with strict timing requirements. HPC job dispatchers need to therefore adopt techniques to go beyond the capabilities of those developed for small or homogeneous systems, or for traditional compute-intensive applications. In this paper, we present a job dispatcher suitable for today's large and heterogeneous systems running modern applications. Unlike its predecessors, our dispatcher solves the entire dispatching problem using Constraint Programming (CP) with a model size independent of the system size. Experimental results based on a simulation study show that our approach can bring about significant performance gains over the existing CP-based dispatchers in a large or heterogeneous system.
2021
27th International Conference on Principles and Practice of Constraint Programming (CP 2021)
26:1
26:16
Galleguillos C., Kiziltan Z., Soto R. (2021). A job dispatcher for large and heterogeneous HPC systems running modern applications. Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing [10.4230/LIPIcs.CP.2021.26].
Galleguillos C.; Kiziltan Z.; Soto R.
File in questo prodotto:
File Dimensione Formato  
LIPIcs-CP-2021-26.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 2.75 MB
Formato Adobe PDF
2.75 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/875635
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact