Electric vehicles (EV) feature detailed monitoring and control over the CAN bus. Some of this data is made available to users on the On-Board Diagnostic version II (OBDII) bus thus providing an opportunity for large scale high-frequency data collection. This paper introduces a connected monitoring system for OBDII equipped vehicles. The system comprises a low cost hardware design and monitoring algorithms designed to optimize the number of variables collected and their collection frequency. The algorithm aims at collecting a high quantity of Battery Management System (BMS) data in electric vehicles together with power-usage data to enable short and long term estimation for battery state of health (SOH) and state of charge (SOC). The proposed system has been implemented and tested on a Nissan Leaf and lead to the acquisition of 1.7 million records over 120 hours of driving.
Aguiari, D., Chou, K.S., Tse, R., Pau, G. (2022). Monitoring Electric Vehicles on The Go. New York : Institute of Electrical and Electronics Engineers Inc. [10.1109/CCNC49033.2022.9700713].
Monitoring Electric Vehicles on The Go
Aguiari, Davide;Pau, Giovanni
2022
Abstract
Electric vehicles (EV) feature detailed monitoring and control over the CAN bus. Some of this data is made available to users on the On-Board Diagnostic version II (OBDII) bus thus providing an opportunity for large scale high-frequency data collection. This paper introduces a connected monitoring system for OBDII equipped vehicles. The system comprises a low cost hardware design and monitoring algorithms designed to optimize the number of variables collected and their collection frequency. The algorithm aims at collecting a high quantity of Battery Management System (BMS) data in electric vehicles together with power-usage data to enable short and long term estimation for battery state of health (SOH) and state of charge (SOC). The proposed system has been implemented and tested on a Nissan Leaf and lead to the acquisition of 1.7 million records over 120 hours of driving.File | Dimensione | Formato | |
---|---|---|---|
Aguiari-Monitoring_Electric_Vehicles_on_The_Go.pdf
accesso aperto
Tipo:
Postprint
Licenza:
Licenza per accesso libero gratuito
Dimensione
1.76 MB
Formato
Adobe PDF
|
1.76 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.