Purpose: To evaluate the influence of particle and air-abrasion on the surface characterization and shear bond strength (SBS) of a Y-TZP ceramic with a resin cement. Materials and Methods: Y-TZP specimens were air-abraded with 50 μm alumina particles; 120 μm alumina particles; 30 μm silica-coated alumina particles (Rocatec Soft); 110 μm silica-coated alumina particles (Rocatec Plus). Air-abrasion was performed before (BS); after (AS); before and after (BAS) zirconia sintering. Surface characterization included roughness (n = 10), wettability (n = 10), morphology (n = 2), and elemental composition (n = 2). For SBS (n = 11), composite resin discs were bonded to the air-abraded and silane-treated zirconia surface, with the resin cement RelyX ARC. Failure mode was determined. Roughness, wettability, and SBS data were analyzed by two-way ANOVA with pairwise interaction and Tukey's test (α = 0.05). Results: Air-abrasion performed with coarser particles at BS and BAS moments provided the highest roughness values, while the lowest roughness values were observed with particles combined with AS moment (p < 0.01). Rocatec Plus provided lower contact angle than the 120 μm alumina particles (p = 0.013), and BAS exhibited lower contact angle than BS (p = 0.002). The combinations 120 μm/BS and the silica-coated alumina particles/AS and /BAS showed the highest SBS (p < 0.05). The combination of each particle/BAS was statistically similar to the same particle/AS. Failure mode was 100% adhesive for all groups. The interaction particle size/air-abrasion moment determined the morphological pattern. Silicon was observed only in the Rocatec groups. Conclusions: Roughness was influenced by the particle size and was higher when the zirconia was air-abraded in its green stage. The particle composition played an important role in the wettability and both studied air-abrasion moments provided similar wettability than the one in which air-abrasion is usually performed. The highest SBS values were observed in the three moments, by using certain particles for each moment.

Martins, S.B., Abi-Rached, F.D.O., Adabo, G.L., Baldissara, P., Fonseca, R.G. (2019). Influence of Particle and Air-Abrasion Moment on Y-TZP Surface Characterization and Bond Strength. JOURNAL OF PROSTHODONTICS, 28(1), e271-e278 [10.1111/jopr.12718].

Influence of Particle and Air-Abrasion Moment on Y-TZP Surface Characterization and Bond Strength

Baldissara P.
Penultimo
Formal Analysis
;
2019

Abstract

Purpose: To evaluate the influence of particle and air-abrasion on the surface characterization and shear bond strength (SBS) of a Y-TZP ceramic with a resin cement. Materials and Methods: Y-TZP specimens were air-abraded with 50 μm alumina particles; 120 μm alumina particles; 30 μm silica-coated alumina particles (Rocatec Soft); 110 μm silica-coated alumina particles (Rocatec Plus). Air-abrasion was performed before (BS); after (AS); before and after (BAS) zirconia sintering. Surface characterization included roughness (n = 10), wettability (n = 10), morphology (n = 2), and elemental composition (n = 2). For SBS (n = 11), composite resin discs were bonded to the air-abraded and silane-treated zirconia surface, with the resin cement RelyX ARC. Failure mode was determined. Roughness, wettability, and SBS data were analyzed by two-way ANOVA with pairwise interaction and Tukey's test (α = 0.05). Results: Air-abrasion performed with coarser particles at BS and BAS moments provided the highest roughness values, while the lowest roughness values were observed with particles combined with AS moment (p < 0.01). Rocatec Plus provided lower contact angle than the 120 μm alumina particles (p = 0.013), and BAS exhibited lower contact angle than BS (p = 0.002). The combinations 120 μm/BS and the silica-coated alumina particles/AS and /BAS showed the highest SBS (p < 0.05). The combination of each particle/BAS was statistically similar to the same particle/AS. Failure mode was 100% adhesive for all groups. The interaction particle size/air-abrasion moment determined the morphological pattern. Silicon was observed only in the Rocatec groups. Conclusions: Roughness was influenced by the particle size and was higher when the zirconia was air-abraded in its green stage. The particle composition played an important role in the wettability and both studied air-abrasion moments provided similar wettability than the one in which air-abrasion is usually performed. The highest SBS values were observed in the three moments, by using certain particles for each moment.
2019
Martins, S.B., Abi-Rached, F.D.O., Adabo, G.L., Baldissara, P., Fonseca, R.G. (2019). Influence of Particle and Air-Abrasion Moment on Y-TZP Surface Characterization and Bond Strength. JOURNAL OF PROSTHODONTICS, 28(1), e271-e278 [10.1111/jopr.12718].
Martins, S. B.; Abi-Rached, F. D. O.; Adabo, G. L.; Baldissara, P.; Fonseca, R. G.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/874970
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 11
social impact