A current challenge in condensed matter physics is the realization of strongly correlated, viscous electron fluids. These fluids can be described by holography, that is, by mapping them onto a weakly curved gravitational theory via gauge/gravity duality. The canonical system considered for realizations has been graphene. In this work, we show that Kagome systems with electron fillings adjusted to the Dirac nodes provide a much more compelling platform for realizations of viscous electron fluids, including non-linear effects such as turbulence. In particular, we find that in Scandium Herbertsmithite, the fine-structure constant, which measures the effective Coulomb interaction, is enhanced by a factor of about 3.2 as compared to graphene. We employ holography to estimate the ratio of the shear viscosity over the entropy density in Sc-Herbertsmithite, and find it about three times smaller than in graphene. These findings put the turbulent flow regime described by holography within the reach of experiments. Viscous electron fluids are predicted in strongly correlated systems but remain challenging to realize. Here, the authors predict enhanced effective Coulomb interaction and reduced ratio of the shear viscosity over entropy density in a Kagome metal, inferring turbulent flow of viscous electron fluids.

Turbulent hydrodynamics in strongly correlated Kagome metals / Di Sante, D.; Erdmenger, J.; Greiter, M.; Matthaiakakis, I.; Meyer, R.; Fernández, D.R.; Thomale, R.; van Loon, E.; Wehling, T.. - In: NATURE COMMUNICATIONS. - ISSN 2041-1723. - ELETTRONICO. - 11:1(2020), pp. 3997.1-3997.7. [10.1038/s41467-020-17663-x]

Turbulent hydrodynamics in strongly correlated Kagome metals

Di Sante, D.
Primo
;
2020

Abstract

A current challenge in condensed matter physics is the realization of strongly correlated, viscous electron fluids. These fluids can be described by holography, that is, by mapping them onto a weakly curved gravitational theory via gauge/gravity duality. The canonical system considered for realizations has been graphene. In this work, we show that Kagome systems with electron fillings adjusted to the Dirac nodes provide a much more compelling platform for realizations of viscous electron fluids, including non-linear effects such as turbulence. In particular, we find that in Scandium Herbertsmithite, the fine-structure constant, which measures the effective Coulomb interaction, is enhanced by a factor of about 3.2 as compared to graphene. We employ holography to estimate the ratio of the shear viscosity over the entropy density in Sc-Herbertsmithite, and find it about three times smaller than in graphene. These findings put the turbulent flow regime described by holography within the reach of experiments. Viscous electron fluids are predicted in strongly correlated systems but remain challenging to realize. Here, the authors predict enhanced effective Coulomb interaction and reduced ratio of the shear viscosity over entropy density in a Kagome metal, inferring turbulent flow of viscous electron fluids.
2020
Turbulent hydrodynamics in strongly correlated Kagome metals / Di Sante, D.; Erdmenger, J.; Greiter, M.; Matthaiakakis, I.; Meyer, R.; Fernández, D.R.; Thomale, R.; van Loon, E.; Wehling, T.. - In: NATURE COMMUNICATIONS. - ISSN 2041-1723. - ELETTRONICO. - 11:1(2020), pp. 3997.1-3997.7. [10.1038/s41467-020-17663-x]
Di Sante, D.; Erdmenger, J.; Greiter, M.; Matthaiakakis, I.; Meyer, R.; Fernández, D.R.; Thomale, R.; van Loon, E.; Wehling, T.
File in questo prodotto:
File Dimensione Formato  
Di Sante et al. - 2020 - Turbulent hydrodynamics in strongly correlated Kag.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 938.06 kB
Formato Adobe PDF
938.06 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/874866
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 22
social impact