The fully-developed laminar forced convection of a Newtonian fluid in a duct with stadium-shaped cross section has been analyzed. The effect of viscous dissipation has been taken into account. Three different thermal boundary conditions have been considered: (T) uniform wall temperature distribution; (H1) axially uniform wall heat flux distribution with peripherally uniform wall temperature distribution; (H2) axially and peripherally uniform wall heat flux distribution. The adiabatic-wall boundary condition has also been analyzed as a special case of the H2 boundary condition. The velocity and temperature distributions in the fluid, as well as the Fanning friction factor and the Nusselt number, have been evaluated numerically, by employing a Galerkin finite element method. As expected, the numerical evaluation of the dimensionless temperature distribution and of the Nusselt number reveals that increasing discrepancies between the H1 and H2 boundary conditions exist if the stadium-shaped duct is gradually flattened. © 2001 Elsevier Science Ltd.

Analysis of the effect of viscous dissipation for laminar flow in stadium-shaped ducts

Barletta A.;Rossi Di Schio Eugenia
2001

Abstract

The fully-developed laminar forced convection of a Newtonian fluid in a duct with stadium-shaped cross section has been analyzed. The effect of viscous dissipation has been taken into account. Three different thermal boundary conditions have been considered: (T) uniform wall temperature distribution; (H1) axially uniform wall heat flux distribution with peripherally uniform wall temperature distribution; (H2) axially and peripherally uniform wall heat flux distribution. The adiabatic-wall boundary condition has also been analyzed as a special case of the H2 boundary condition. The velocity and temperature distributions in the fluid, as well as the Fanning friction factor and the Nusselt number, have been evaluated numerically, by employing a Galerkin finite element method. As expected, the numerical evaluation of the dimensionless temperature distribution and of the Nusselt number reveals that increasing discrepancies between the H1 and H2 boundary conditions exist if the stadium-shaped duct is gradually flattened. © 2001 Elsevier Science Ltd.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/873858
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact