Given a curve Γ⊂C with specified regularity, we investigate boundedness and positivity for a certain three-point symmetrization of a Cauchy-like kernel KΓ whose definition is dictated by the geometry and complex function theory of the domains bounded by Γ. Our results show that S[ReKΓ] and S[ImKΓ] (namely, the symmetrizations of the real and imaginary parts of KΓ) behave very differently from their counterparts for the Cauchy kernel previously studied in the literature. For instance, the quantities S[ReKΓ](z) and S[ImKΓ](z) can behave like [Formula presented] and [Formula presented], where z is any three-tuple of points in Γ and c(z) is the Menger curvature of z. For the original Cauchy kernel, an iconic result of M. Melnikov gives that the symmetrized forms of the real and imaginary parts are each equal to [Formula presented] for all three-tuples in C.

Lanzani L., Pramanik M. (2021). Symmetrization of a Cauchy-like kernel on curves. JOURNAL OF FUNCTIONAL ANALYSIS, 281(9), 1-30 [10.1016/j.jfa.2021.109202].

Symmetrization of a Cauchy-like kernel on curves

Lanzani L.
;
2021

Abstract

Given a curve Γ⊂C with specified regularity, we investigate boundedness and positivity for a certain three-point symmetrization of a Cauchy-like kernel KΓ whose definition is dictated by the geometry and complex function theory of the domains bounded by Γ. Our results show that S[ReKΓ] and S[ImKΓ] (namely, the symmetrizations of the real and imaginary parts of KΓ) behave very differently from their counterparts for the Cauchy kernel previously studied in the literature. For instance, the quantities S[ReKΓ](z) and S[ImKΓ](z) can behave like [Formula presented] and [Formula presented], where z is any three-tuple of points in Γ and c(z) is the Menger curvature of z. For the original Cauchy kernel, an iconic result of M. Melnikov gives that the symmetrized forms of the real and imaginary parts are each equal to [Formula presented] for all three-tuples in C.
2021
Lanzani L., Pramanik M. (2021). Symmetrization of a Cauchy-like kernel on curves. JOURNAL OF FUNCTIONAL ANALYSIS, 281(9), 1-30 [10.1016/j.jfa.2021.109202].
Lanzani L.; Pramanik M.
File in questo prodotto:
File Dimensione Formato  
main.pdf

Open Access dal 28/07/2023

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 1.13 MB
Formato Adobe PDF
1.13 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/873700
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact