Re(I) complexes have potential in biomedical sciences as imaging agents, diagnostics and therapeutics. Thus, it is crucial to understand how Re(I) complexes interact with carrier proteins, like serum albumins. Here, two neutral Re(I) complexes were used (fac-[Re(CO)3(1,10-phenanthroline)L], in which L is either 4-cyanophenyltetrazolate (1) or 4-methoxycarbonylphenyltetrazole ester (2), to study the interactions with bovine serum albumin (BSA). Spectroscopic measurements, calculations of thermodynamic and Förster resonance energy transfer parameters, as well as molecular modelling, were performed to study differential binding between BSA and complex 1 and 2. Induced-fit docking combined with quantum-polarised ligand docking were employed in what is believed to be a first for a Re(I) complex as a ligand for BSA. Our findings provide a basis for other molecular interaction studies and suggest that subtle functional group alterations at the terminal region of the Re(I) complex have a significant impact on the ability of this class of compounds to interact with BSA.
Lazniewska J., Agostino M., Hickey S.M., Parkinson-Lawrence E., Stagni S., Massi M., et al. (2021). Spectroscopic and Molecular Docking Study of the Interaction between Neutral Re(I) Tetrazolate Complexes and Bovine Serum Albumin. CHEMISTRY-A EUROPEAN JOURNAL, 27(44), 11406-11417 [10.1002/chem.202101307].
Spectroscopic and Molecular Docking Study of the Interaction between Neutral Re(I) Tetrazolate Complexes and Bovine Serum Albumin
Stagni S.;Massi M.
;
2021
Abstract
Re(I) complexes have potential in biomedical sciences as imaging agents, diagnostics and therapeutics. Thus, it is crucial to understand how Re(I) complexes interact with carrier proteins, like serum albumins. Here, two neutral Re(I) complexes were used (fac-[Re(CO)3(1,10-phenanthroline)L], in which L is either 4-cyanophenyltetrazolate (1) or 4-methoxycarbonylphenyltetrazole ester (2), to study the interactions with bovine serum albumin (BSA). Spectroscopic measurements, calculations of thermodynamic and Förster resonance energy transfer parameters, as well as molecular modelling, were performed to study differential binding between BSA and complex 1 and 2. Induced-fit docking combined with quantum-polarised ligand docking were employed in what is believed to be a first for a Re(I) complex as a ligand for BSA. Our findings provide a basis for other molecular interaction studies and suggest that subtle functional group alterations at the terminal region of the Re(I) complex have a significant impact on the ability of this class of compounds to interact with BSA.File | Dimensione | Formato | |
---|---|---|---|
AM_202101307.pdf
Open Access dal 18/06/2022
Tipo:
Postprint
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione
1.66 MB
Formato
Adobe PDF
|
1.66 MB | Adobe PDF | Visualizza/Apri |
chem202101307-sup-0001-misc_information.pdf
accesso aperto
Tipo:
File Supplementare
Licenza:
Licenza per accesso libero gratuito
Dimensione
1.14 MB
Formato
Adobe PDF
|
1.14 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.