Given a bounded Lipschitz domain Ω ⊂ ℝn n ≥ 3, we prove that the Poisson's problem for the Laplacian with right-hand side in L-tp(Ω), Robin-type boundary datum in the Besov space Bp1-1/p-t,p(∂Ω) and non-negative, non-everywhere vanishing Robin coefficient b ∈ L n-1(∂ω), is uniquely solvable in the class L 2-tp(Omega;) for (t, 1/p) ∈ νε, where νε (ε ≥ 0) is an open (Ω,b)-dependent plane region and ν0 is to be interpreted ad the common (optimal) solvability region for all Lipschitz domains. We prove a similar regularity result for the Poisson's problem for the 3-dimensional Lamé System with traction-type Robin boundary condition. All solutions are expressed as boundary layer potentials.

Lanzani, L., Mendez, O. (2006). The Poisson's problem for the Laplacian with Robin boundary condition in non-smooth domains. REVISTA MATEMATICA IBEROAMERICANA, 22(1), 181-204 [10.4171/RMI/453].

The Poisson's problem for the Laplacian with Robin boundary condition in non-smooth domains

Lanzani L.
;
2006

Abstract

Given a bounded Lipschitz domain Ω ⊂ ℝn n ≥ 3, we prove that the Poisson's problem for the Laplacian with right-hand side in L-tp(Ω), Robin-type boundary datum in the Besov space Bp1-1/p-t,p(∂Ω) and non-negative, non-everywhere vanishing Robin coefficient b ∈ L n-1(∂ω), is uniquely solvable in the class L 2-tp(Omega;) for (t, 1/p) ∈ νε, where νε (ε ≥ 0) is an open (Ω,b)-dependent plane region and ν0 is to be interpreted ad the common (optimal) solvability region for all Lipschitz domains. We prove a similar regularity result for the Poisson's problem for the 3-dimensional Lamé System with traction-type Robin boundary condition. All solutions are expressed as boundary layer potentials.
2006
Lanzani, L., Mendez, O. (2006). The Poisson's problem for the Laplacian with Robin boundary condition in non-smooth domains. REVISTA MATEMATICA IBEROAMERICANA, 22(1), 181-204 [10.4171/RMI/453].
Lanzani, L.; Mendez, O.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/873682
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 12
social impact