We propose an algorithm for the problem of training a SVM model when the set of training examples is horizontally distributed across several data sources. The algorithm requires only one pass through each remote source of training examples, and its accuracy and efficiency follow a clear pattern as function of a user-defined parameter. We outline an agent-based implementation of the algorithm.

S. Lodi, R. Ñanculef, C. Sartori (2009). L2-SVM Training with Distributed Data. BERLIN : Springer.

L2-SVM Training with Distributed Data

LODI, STEFANO;SARTORI, CLAUDIO
2009

Abstract

We propose an algorithm for the problem of training a SVM model when the set of training examples is horizontally distributed across several data sources. The algorithm requires only one pass through each remote source of training examples, and its accuracy and efficiency follow a clear pattern as function of a user-defined parameter. We outline an agent-based implementation of the algorithm.
2009
Multiagent System Technologies
208
213
S. Lodi, R. Ñanculef, C. Sartori (2009). L2-SVM Training with Distributed Data. BERLIN : Springer.
S. Lodi; R. Ñanculef; C. Sartori
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/87198
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact