Giant low surface brightness (GLSB) galaxies are commonly thought to be massive, dark matter dominated systems. However, this conclusion is based on highly uncertain rotation curves. We present here a new study of two prototypical GLSB galaxies: Malin 1 and NGC 7589. We re-analysed existing H I observations and derived new rotation curves, which were used to investigate the distributions of luminous and dark matter in these galaxies. In contrast to previous findings, the rotation curves of both galaxies show a steep rise in the central parts, typical of high surface brightness (HSB) systems. Mass decompositions with a dark matter halo show that baryons may dominate the dynamics of the inner regions. Indeed, a “maximum disk” fit gives stellar mass-to-light ratios in the range of values typically found for HSB galaxies. These results, together with other recent studies, suggest that GLSB galaxies are systems with a double structure: an inner HSB early-type spiral galaxy and an outer extended LSB disk. We also tested the predictions of MOND: the rotation curve of NGC 7589 is reproduced well, whereas Malin 1 represents a challenging test for the theory.

Structure and dynamics of giant low surface brightness galaxies

FRATERNALI, FILIPPO;
2010

Abstract

Giant low surface brightness (GLSB) galaxies are commonly thought to be massive, dark matter dominated systems. However, this conclusion is based on highly uncertain rotation curves. We present here a new study of two prototypical GLSB galaxies: Malin 1 and NGC 7589. We re-analysed existing H I observations and derived new rotation curves, which were used to investigate the distributions of luminous and dark matter in these galaxies. In contrast to previous findings, the rotation curves of both galaxies show a steep rise in the central parts, typical of high surface brightness (HSB) systems. Mass decompositions with a dark matter halo show that baryons may dominate the dynamics of the inner regions. Indeed, a “maximum disk” fit gives stellar mass-to-light ratios in the range of values typically found for HSB galaxies. These results, together with other recent studies, suggest that GLSB galaxies are systems with a double structure: an inner HSB early-type spiral galaxy and an outer extended LSB disk. We also tested the predictions of MOND: the rotation curve of NGC 7589 is reproduced well, whereas Malin 1 represents a challenging test for the theory.
2010
F. Lelli; F. Fraternali; R. Sancisi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/87155
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 70
  • ???jsp.display-item.citation.isi??? 67
social impact