Similarities in the chemical composition of two of the closest Milky Way satellites, namely, the Large Magellanic Cloud (LMC) and the Sagittarius (Sgr) dwarf galaxy, have been proposed in the literature, suggesting similar chemical enrichment histories between the two galaxies. This proposition, however, rests on different abundance analyses, which likely introduce various systematics that hamper a fair comparison among the different data sets. In order to bypass this issue (and highlight real similarities and differences between their abundance patterns), we present a homogeneous chemical analysis of 30 giant stars in the LMC, 14 giant stars in Sgr, and 14 giants in the Milky Way, based on high-resolution spectra taken with the spectrograph UVES-FLAMES. The LMC and Sgr stars, in the considered metallicity range ([Fe/H] > -1.1 dex), show very similar abundance ratios for almost all the elements, with differences only in the heavy s-process elements Ba, La, and Nd, suggesting a different contribution by asymptotic giant branch stars. On the other hand, the two galaxies have chemical patterns clearly different from those measured in the Galactic stars, especially for the elements produced by massive stars. This finding suggests that the massive stars contributed less to the chemical enrichment of these galaxies with respect to the Milky Way. The derived abundances support similar chemical enrichment histories for the LMC and Sgr.

A Homogeneous Comparison between the Chemical Composition of the Large Magellanic Cloud and the Sagittarius Dwarf Galaxy

Minelli A.
Primo
Writing – Original Draft Preparation
;
Mucciarelli A.
Secondo
Supervision
;
Ferraro F. R.
Membro del Collaboration Group
2021

Abstract

Similarities in the chemical composition of two of the closest Milky Way satellites, namely, the Large Magellanic Cloud (LMC) and the Sagittarius (Sgr) dwarf galaxy, have been proposed in the literature, suggesting similar chemical enrichment histories between the two galaxies. This proposition, however, rests on different abundance analyses, which likely introduce various systematics that hamper a fair comparison among the different data sets. In order to bypass this issue (and highlight real similarities and differences between their abundance patterns), we present a homogeneous chemical analysis of 30 giant stars in the LMC, 14 giant stars in Sgr, and 14 giants in the Milky Way, based on high-resolution spectra taken with the spectrograph UVES-FLAMES. The LMC and Sgr stars, in the considered metallicity range ([Fe/H] > -1.1 dex), show very similar abundance ratios for almost all the elements, with differences only in the heavy s-process elements Ba, La, and Nd, suggesting a different contribution by asymptotic giant branch stars. On the other hand, the two galaxies have chemical patterns clearly different from those measured in the Galactic stars, especially for the elements produced by massive stars. This finding suggests that the massive stars contributed less to the chemical enrichment of these galaxies with respect to the Milky Way. The derived abundances support similar chemical enrichment histories for the LMC and Sgr.
2021
Minelli A.; Mucciarelli A.; Romano D.; Bellazzini M.; Origlia L.; Ferraro F.R.
File in questo prodotto:
File Dimensione Formato  
minelli21a_postprint.pdf

Open Access dal 03/04/2022

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 8.1 MB
Formato Adobe PDF
8.1 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/871445
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact