Leveraging the Internet of Things (IoT) in intensive domains, such as in the Industrial Internet of Things (IIoT) or Internet of Medical Things (IoMT), provides automation and sensing solutions for complex environments through the interconnection of different sensors and actuators. However, these scenarios usually demand to meet stringent Quality of Service (QoS) requirements to work properly. Fog computing, a paradigm that brings computation and storage closer to the edge, and Software-Defined Networking (SDN), a networking paradigm that enables for network scalability and flexibility, can be combined. To do so, fog nodes that integrate both, computation resources and SDN capabilities, are leveraged to meet these stringent needs. Clearly, the placement of such fog nodes plays a key role in the achieved QoS. In this paper, an optimal fog node placement formulation is evaluated in an emulated fog and SDN environment. Results show that an optimal fog node placement can achieve a reduction of up to 59% in the network latency with a minimal jitter compared with other well-known placement methods.

Fog Node Placement in IoT Scenarios with Stringent QoS Requirements: Experimental Evaluation / Herrera J.L.; Bellavista P.; Foschini L.; Garcia-Alonso J.; Galan-Jimenez J.; Berrocal J.. - ELETTRONICO. - (2021), pp. 1-6. (Intervento presentato al convegno 2021 IEEE International Conference on Communications, ICC 2021 tenutosi a can nel 2021) [10.1109/ICC42927.2021.9500900].

Fog Node Placement in IoT Scenarios with Stringent QoS Requirements: Experimental Evaluation

Bellavista P.;Foschini L.;
2021

Abstract

Leveraging the Internet of Things (IoT) in intensive domains, such as in the Industrial Internet of Things (IIoT) or Internet of Medical Things (IoMT), provides automation and sensing solutions for complex environments through the interconnection of different sensors and actuators. However, these scenarios usually demand to meet stringent Quality of Service (QoS) requirements to work properly. Fog computing, a paradigm that brings computation and storage closer to the edge, and Software-Defined Networking (SDN), a networking paradigm that enables for network scalability and flexibility, can be combined. To do so, fog nodes that integrate both, computation resources and SDN capabilities, are leveraged to meet these stringent needs. Clearly, the placement of such fog nodes plays a key role in the achieved QoS. In this paper, an optimal fog node placement formulation is evaluated in an emulated fog and SDN environment. Results show that an optimal fog node placement can achieve a reduction of up to 59% in the network latency with a minimal jitter compared with other well-known placement methods.
2021
IEEE International Conference on Communications
1
6
Fog Node Placement in IoT Scenarios with Stringent QoS Requirements: Experimental Evaluation / Herrera J.L.; Bellavista P.; Foschini L.; Garcia-Alonso J.; Galan-Jimenez J.; Berrocal J.. - ELETTRONICO. - (2021), pp. 1-6. (Intervento presentato al convegno 2021 IEEE International Conference on Communications, ICC 2021 tenutosi a can nel 2021) [10.1109/ICC42927.2021.9500900].
Herrera J.L.; Bellavista P.; Foschini L.; Garcia-Alonso J.; Galan-Jimenez J.; Berrocal J.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/871161
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact