In this paper, a thorough comparison of multi-antenna spectrum sensing techniques is performed. We considered well known algorithms, such as Energy Detector (ED), eigenvalue based detectors, and an algorithm that uses the eigenvector associated to the largest eigenvalue of the covariance matrix. With the idea of auxiliary noise variance estimation, a hybrid approach for the eigenvector-based method is presented and compared against the hybrid Roy's Largest Root Test and hybrid ED. Performance results are evaluated in terms of Receiver Operating Characteristic (ROC) curves and performance curves, i.e., detection probability as a function of the Signal to Noise Ratio (SNR). It is shown that the the eigenvector-based algorithm and its hybrid variant are able approach the optimal Neyman-Pearson performance.
RIVIELLO, D.G., DHAKAL, P., GARELLO, R. (2015). On the use of eigenvectors in multi-antenna spectrum sensing with noise variance estimation. USA : Institute of Electrical and Electronics Engineers Inc. [10.1109/SPIN.2015.7095339].
On the use of eigenvectors in multi-antenna spectrum sensing with noise variance estimation
RIVIELLO, DANIEL GAETANO
Primo
;
2015
Abstract
In this paper, a thorough comparison of multi-antenna spectrum sensing techniques is performed. We considered well known algorithms, such as Energy Detector (ED), eigenvalue based detectors, and an algorithm that uses the eigenvector associated to the largest eigenvalue of the covariance matrix. With the idea of auxiliary noise variance estimation, a hybrid approach for the eigenvector-based method is presented and compared against the hybrid Roy's Largest Root Test and hybrid ED. Performance results are evaluated in terms of Receiver Operating Characteristic (ROC) curves and performance curves, i.e., detection probability as a function of the Signal to Noise Ratio (SNR). It is shown that the the eigenvector-based algorithm and its hybrid variant are able approach the optimal Neyman-Pearson performance.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.