Background: In recent years, we constructed a microscopic optical potential (OP) for elastic nucleon-nucleus (NA) scattering using modern approaches based on chiral theories for the nucleon-nucleon (NN) interaction. The OP was derived at first order of the spectator expansion in Watson multiple scattering theory and its final expression was a folding integral between the NN t matrix and the nuclear density of the target. Two- and three-body forces are consistently included both in the target and in the projectile description. Purpose: The purpose of this work is to apply our microscopic OP to nuclei characterized by a ground state of spin-parity quantum numbers Jπ≠0+. Methods: We extended our formalism to include the spin of the target nucleus. The full amplitudes of the NN reaction matrix are retained in the calculations starting from two- and three-body chiral forces. Results: The microscopic OP can be applied in the energy range 100≤E≤350 MeV. We show a remarkable agreement with experimental data for the available observables and, simultaneously, provide reliable estimates for the theoretical uncertainties. Conclusions: This work paves the way toward a full microscopic approach to inelastic NA scattering, showing that the derivation of optical potentials between states with Jπ≠0+ is completely under control.
Vorabbi M., Gennari M., Finelli P., Giusti C., Navratil P., Machleidt R. (2022). Elastic proton scattering off nonzero spin nuclei. PHYSICAL REVIEW C, 105(1), 1-11 [10.1103/PhysRevC.105.014621].
Elastic proton scattering off nonzero spin nuclei
Finelli P.;
2022
Abstract
Background: In recent years, we constructed a microscopic optical potential (OP) for elastic nucleon-nucleus (NA) scattering using modern approaches based on chiral theories for the nucleon-nucleon (NN) interaction. The OP was derived at first order of the spectator expansion in Watson multiple scattering theory and its final expression was a folding integral between the NN t matrix and the nuclear density of the target. Two- and three-body forces are consistently included both in the target and in the projectile description. Purpose: The purpose of this work is to apply our microscopic OP to nuclei characterized by a ground state of spin-parity quantum numbers Jπ≠0+. Methods: We extended our formalism to include the spin of the target nucleus. The full amplitudes of the NN reaction matrix are retained in the calculations starting from two- and three-body chiral forces. Results: The microscopic OP can be applied in the energy range 100≤E≤350 MeV. We show a remarkable agreement with experimental data for the available observables and, simultaneously, provide reliable estimates for the theoretical uncertainties. Conclusions: This work paves the way toward a full microscopic approach to inelastic NA scattering, showing that the derivation of optical potentials between states with Jπ≠0+ is completely under control.File | Dimensione | Formato | |
---|---|---|---|
PhysRevC.105.014621.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per accesso libero gratuito
Dimensione
1 MB
Formato
Adobe PDF
|
1 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.