We present QBAL, an extension of Girard, Scedrov and Scott’s bounded linear logic. The main novelty of the system is the possibility of quantifying over resource variables. This generalization makes bounded linear logic considerably more flexible, while preserving soundness and completeness for polynomial time. In particular, we provide compositional embeddings of Leivant’s RRW and Hofmann’s LFPL into QBAL.

Bounded Linear Logic, Revisited

DAL LAGO, UGO;
2009

Abstract

We present QBAL, an extension of Girard, Scedrov and Scott’s bounded linear logic. The main novelty of the system is the possibility of quantifying over resource variables. This generalization makes bounded linear logic considerably more flexible, while preserving soundness and completeness for polynomial time. In particular, we provide compositional embeddings of Leivant’s RRW and Hofmann’s LFPL into QBAL.
Lecture Notes in Computer Science
80
94
U. Dal Lago; M. Hofmann
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/86891
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 10
social impact