PURPOSE OF REVIEW: A number of pharmacokinetic and pharmacodynamic factors in critically ill or severely immunosuppressed patients influence the effectiveness of antifungal therapy making dosing less certain. Recent position papers from infectious diseases societies and working groups have proposed methods for dosage individualization of antibiotics in critically ill patients using a combination of population pharmacokinetic models, Monte-Carlo simulation and therapeutic drug monitoring (TDM) to guide dosing. In this review, we examine the current limitations and practical issues of adapting a pharmacometrics-guided dosing approaches to dosing of antifungals in critically ill or severely immunosuppressed populations. RECENT FINDINGS: We review the current status of antifungal susceptibility testing and challenges in incorporating TDM into Bayesian dose prediction models. We also discuss issues facing pharmacometrics dosage adjustment of newer targeted chemotherapies that exhibit severe pharmacokinetic drug-drug interactions with triazole antifungals. SUMMARY: Although knowledge of antifungal pharmacokinetic/pharmacodynamic is maturing, the practical application of these concepts towards point-of-care dosage individualization is still limited. User-friendly pharmacometric models are needed to improve the utility of TDM and management of a growing number of severe pharmacokinetic antifungal drug-drug interactions with targeted chemotherapies.

Managing uncertainty in antifungal dosing: antibiograms, therapeutic drug monitoring and drug-drug interactions / Lewis R.E.; Andes D.R.. - In: CURRENT OPINION IN INFECTIOUS DISEASES. - ISSN 0951-7375. - ELETTRONICO. - 34:4(2021), pp. 288-296. [10.1097/QCO.0000000000000740]

Managing uncertainty in antifungal dosing: antibiograms, therapeutic drug monitoring and drug-drug interactions

Lewis R. E.
Primo
Writing – Original Draft Preparation
;
2021

Abstract

PURPOSE OF REVIEW: A number of pharmacokinetic and pharmacodynamic factors in critically ill or severely immunosuppressed patients influence the effectiveness of antifungal therapy making dosing less certain. Recent position papers from infectious diseases societies and working groups have proposed methods for dosage individualization of antibiotics in critically ill patients using a combination of population pharmacokinetic models, Monte-Carlo simulation and therapeutic drug monitoring (TDM) to guide dosing. In this review, we examine the current limitations and practical issues of adapting a pharmacometrics-guided dosing approaches to dosing of antifungals in critically ill or severely immunosuppressed populations. RECENT FINDINGS: We review the current status of antifungal susceptibility testing and challenges in incorporating TDM into Bayesian dose prediction models. We also discuss issues facing pharmacometrics dosage adjustment of newer targeted chemotherapies that exhibit severe pharmacokinetic drug-drug interactions with triazole antifungals. SUMMARY: Although knowledge of antifungal pharmacokinetic/pharmacodynamic is maturing, the practical application of these concepts towards point-of-care dosage individualization is still limited. User-friendly pharmacometric models are needed to improve the utility of TDM and management of a growing number of severe pharmacokinetic antifungal drug-drug interactions with targeted chemotherapies.
2021
Managing uncertainty in antifungal dosing: antibiograms, therapeutic drug monitoring and drug-drug interactions / Lewis R.E.; Andes D.R.. - In: CURRENT OPINION IN INFECTIOUS DISEASES. - ISSN 0951-7375. - ELETTRONICO. - 34:4(2021), pp. 288-296. [10.1097/QCO.0000000000000740]
Lewis R.E.; Andes D.R.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/868589
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact