A recently developed model chemistry (denoted as junChS [Alessandrini, S.; et al. J. Chem. Theory Comput. 2020, 16, 988-1006]) has been extended to the employment of explicitly correlated (F12) methods. This led us to propose a family of effective, reliable, and parameter-free schemes for the computation of accurate interaction energies of molecular complexes ruled by noncovalent interactions. A thorough benchmark based on a wide range of interactions showed that the so-called junChS-F12 model, which employs cost-effective revDSD-PBEP86-D3(BJ) reference geometries, has an improved performance with respect to its conventional counterpart and outperforms well-known model chemistries. Without employing any empirical parameter and at an affordable computational cost, junChS-F12 reaches subchemical accuracy. Accurate characterizations of molecular complexes are usually limited to energetics. To take a step forward, the conventional and F12 composite schemes developed for interaction energies have been extended to structural determinations. A benchmark study demonstrated that the most effective option is to add MP2-F12 core-valence correlation corrections to fc-CCSD(T)-F12/jun-cc-pVTZ geometries without the need of recovering the basis set superposition error and the extrapolation to the complete basis set.

JunChS and junChS-F12 Models: Parameter-free Efficient yet Accurate Composite Schemes for Energies and Structures of Noncovalent Complexes

Alessandrini S.;Puzzarini C.
;
2021

Abstract

A recently developed model chemistry (denoted as junChS [Alessandrini, S.; et al. J. Chem. Theory Comput. 2020, 16, 988-1006]) has been extended to the employment of explicitly correlated (F12) methods. This led us to propose a family of effective, reliable, and parameter-free schemes for the computation of accurate interaction energies of molecular complexes ruled by noncovalent interactions. A thorough benchmark based on a wide range of interactions showed that the so-called junChS-F12 model, which employs cost-effective revDSD-PBEP86-D3(BJ) reference geometries, has an improved performance with respect to its conventional counterpart and outperforms well-known model chemistries. Without employing any empirical parameter and at an affordable computational cost, junChS-F12 reaches subchemical accuracy. Accurate characterizations of molecular complexes are usually limited to energetics. To take a step forward, the conventional and F12 composite schemes developed for interaction energies have been extended to structural determinations. A benchmark study demonstrated that the most effective option is to add MP2-F12 core-valence correlation corrections to fc-CCSD(T)-F12/jun-cc-pVTZ geometries without the need of recovering the basis set superposition error and the extrapolation to the complete basis set.
Lupi J.; Alessandrini S.; Puzzarini C.; Barone V.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/868585
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact