A new tetrasubstituted pyran-2-one and a new dihydrobenzofuran, named colletochlorins E and F (1 and 2, respectively), were isolated from the culture filtrates of the fungus Colletotrichum higginsianum together with the already known colletochlorin A, 4-chloroorcinol, and colletopyrone. Colletochlorin E, the main metabolite, and colletochlorin F were characterized by spectroscopic (NMR, HRESIMS) and chemical methods as 3-[7-chloro-4-hydroxy-2-(1-hydroxy-1-methylethyl)-6-methyl-2,3-dihydrobenzofuran-5-ylmethyl]-4-hydroxy-5,6-dimethylpyran-2-one and 7-chloro-2-(1-hydroxy-1-methylethyl)-6-methyl-2,3-dihydrobenzofuran-4-ol, respectively. The absolute configuration 2′S of 1 was deduced by X-ray diffractometric analysis, whereas 2S of 2 was deduced by comparison of its NMR and CD data with those of 1. When assayed by leaf puncture on Sonchus arvensis and tomato leaves, 2 caused quite large necrosis (>1 cm), whereas 4-chloroorcinol proved to be the most active compound. These results were confirmed by those obtained in assays on Lemna minor and Phelipanche ramosa seed germination. Furthermore 1, colletochlorin A and colletopyrone were less or modestly active in the latter assay, respectively. Interestingly, the phytotoxicity was not associated with an antibiotic activity, whereas only 4-chloroorcinol and colletochlorin F exhibited zootoxic activity.

Colletochlorins E and F, New Phytotoxic Tetrasubstituted Pyran-2-one and Dihydrobenzofuran, Isolated from Colletotrichum higginsianum with Potential Herbicidal Activity

Baroncelli R.;
2017

Abstract

A new tetrasubstituted pyran-2-one and a new dihydrobenzofuran, named colletochlorins E and F (1 and 2, respectively), were isolated from the culture filtrates of the fungus Colletotrichum higginsianum together with the already known colletochlorin A, 4-chloroorcinol, and colletopyrone. Colletochlorin E, the main metabolite, and colletochlorin F were characterized by spectroscopic (NMR, HRESIMS) and chemical methods as 3-[7-chloro-4-hydroxy-2-(1-hydroxy-1-methylethyl)-6-methyl-2,3-dihydrobenzofuran-5-ylmethyl]-4-hydroxy-5,6-dimethylpyran-2-one and 7-chloro-2-(1-hydroxy-1-methylethyl)-6-methyl-2,3-dihydrobenzofuran-4-ol, respectively. The absolute configuration 2′S of 1 was deduced by X-ray diffractometric analysis, whereas 2S of 2 was deduced by comparison of its NMR and CD data with those of 1. When assayed by leaf puncture on Sonchus arvensis and tomato leaves, 2 caused quite large necrosis (>1 cm), whereas 4-chloroorcinol proved to be the most active compound. These results were confirmed by those obtained in assays on Lemna minor and Phelipanche ramosa seed germination. Furthermore 1, colletochlorin A and colletopyrone were less or modestly active in the latter assay, respectively. Interestingly, the phytotoxicity was not associated with an antibiotic activity, whereas only 4-chloroorcinol and colletochlorin F exhibited zootoxic activity.
2017
Masi M.; Cimmino A.; Boari A.; Tuzi A.; Zonno M.C.; Baroncelli R.; Vurro M.; Evidente A.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/865723
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 35
social impact