Methicillin-resistant Staphylococcus epidermidis (MRSE) bacteria are being recognized as true pathogens as they are able to resist methicillin and commonly form biofilms. Recent studies have shown that antimicrobial peptides (AMPs) are promising agents against biofilm-associated bacterial infections. In this study, we aimed to explore the antibiofilm activity of melittin, either alone or in combination with vancomycin and rifampin, against biofilm-producing MRSE strains. Minimum biofilm preventive concentration (MBPC), minimum biofilm inhibition concentration (MBIC), and minimum biofilm eradication concentration (MBEC), as well as fractional biofilm preventive-, inhibitory-, and eradication concentrations (FBPCi, FBICi, and FBECi), were determined for the antimicrobial agents tested. Cytotoxicity and hemolytic activity of melittin at its synergistic concentration were examined on human embryonic kidney cells (HEK-293) and Red Blood Cells (RBCs), respectively. The effect of melittin on the downregulation of biofilm-associated genes was explored using Real-Time PCR. MBPC, MBIC, and MBEC values for melittin were in the range of 0.625–20, 0.625–20, and 10–40 μg/μL, respectively. Melittin showed high synergy (FBPCi, FBICi and FBECi < 0.5). The synergism resulted in a 64–512-fold, 2–16 and 2–8-fold reduction in melittin, rifampicin and vancomycin concentrations, respectively. The synergistic melittin concentration found to be effective did not manifest either cytotoxicity on HEK-293 or hemolytic activity on RBCs. Results showed that melittin downregulated the expression of biofilm-associated icaA, aap, and psm genes in all isolates tested, ranging from 0.04-folds to 2.11-folds for icaA and from 0.05 to 3.76-folds for aap and psm. The preventive and therapeutic indexes of melittin were improved 8-fold when combined with vancomycin and rifampin. Based on these findings, the combination of melittin with conventional antibiotics could be proposed for treating or preventing biofilm-associated MRSE infections.

Mirzaei R., Alikhani M.Y., Arciola C.R., Sedighi I., Yousefimashouf R., Bagheri K.P. (2022). Prevention, inhibition, and degradation effects of melittin alone and in combination with vancomycin and rifampin against strong biofilm producer strains of methicillin-resistant Staphylococcus epidermidis. BIOMÉDECINE & PHARMACOTHÉRAPIE, 147, 1-15 [10.1016/j.biopha.2022.112670].

Prevention, inhibition, and degradation effects of melittin alone and in combination with vancomycin and rifampin against strong biofilm producer strains of methicillin-resistant Staphylococcus epidermidis

Arciola C. R.;
2022

Abstract

Methicillin-resistant Staphylococcus epidermidis (MRSE) bacteria are being recognized as true pathogens as they are able to resist methicillin and commonly form biofilms. Recent studies have shown that antimicrobial peptides (AMPs) are promising agents against biofilm-associated bacterial infections. In this study, we aimed to explore the antibiofilm activity of melittin, either alone or in combination with vancomycin and rifampin, against biofilm-producing MRSE strains. Minimum biofilm preventive concentration (MBPC), minimum biofilm inhibition concentration (MBIC), and minimum biofilm eradication concentration (MBEC), as well as fractional biofilm preventive-, inhibitory-, and eradication concentrations (FBPCi, FBICi, and FBECi), were determined for the antimicrobial agents tested. Cytotoxicity and hemolytic activity of melittin at its synergistic concentration were examined on human embryonic kidney cells (HEK-293) and Red Blood Cells (RBCs), respectively. The effect of melittin on the downregulation of biofilm-associated genes was explored using Real-Time PCR. MBPC, MBIC, and MBEC values for melittin were in the range of 0.625–20, 0.625–20, and 10–40 μg/μL, respectively. Melittin showed high synergy (FBPCi, FBICi and FBECi < 0.5). The synergism resulted in a 64–512-fold, 2–16 and 2–8-fold reduction in melittin, rifampicin and vancomycin concentrations, respectively. The synergistic melittin concentration found to be effective did not manifest either cytotoxicity on HEK-293 or hemolytic activity on RBCs. Results showed that melittin downregulated the expression of biofilm-associated icaA, aap, and psm genes in all isolates tested, ranging from 0.04-folds to 2.11-folds for icaA and from 0.05 to 3.76-folds for aap and psm. The preventive and therapeutic indexes of melittin were improved 8-fold when combined with vancomycin and rifampin. Based on these findings, the combination of melittin with conventional antibiotics could be proposed for treating or preventing biofilm-associated MRSE infections.
2022
Mirzaei R., Alikhani M.Y., Arciola C.R., Sedighi I., Yousefimashouf R., Bagheri K.P. (2022). Prevention, inhibition, and degradation effects of melittin alone and in combination with vancomycin and rifampin against strong biofilm producer strains of methicillin-resistant Staphylococcus epidermidis. BIOMÉDECINE & PHARMACOTHÉRAPIE, 147, 1-15 [10.1016/j.biopha.2022.112670].
Mirzaei R.; Alikhani M.Y.; Arciola C.R.; Sedighi I.; Yousefimashouf R.; Bagheri K.P.
File in questo prodotto:
File Dimensione Formato  
Prevention, inhibition, and degradation effects of melittin.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 1.65 MB
Formato Adobe PDF
1.65 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/865036
Citazioni
  • ???jsp.display-item.citation.pmc??? 17
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 29
social impact