We establish a relationship between the robust counterpart of an uncertain cone-convex vector problem and the optimistic counterpart of its uncertain dual. Along the line marked by Beck and Ben-Tal (2009) in the scalar case, we show that operating in the primal problem with a pessimistic view is equivalent to operating with an optimistic approach in its dual.

Lorenzo Cerboni Baiardi, Elisa Caprari, Elena Molho (2019). Primal worst and dual best in robust vector optimization. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 275(3), 830-838 [10.1016/j.ejor.2019.01.003].

Primal worst and dual best in robust vector optimization

Lorenzo Cerboni Baiardi
;
2019

Abstract

We establish a relationship between the robust counterpart of an uncertain cone-convex vector problem and the optimistic counterpart of its uncertain dual. Along the line marked by Beck and Ben-Tal (2009) in the scalar case, we show that operating in the primal problem with a pessimistic view is equivalent to operating with an optimistic approach in its dual.
2019
Lorenzo Cerboni Baiardi, Elisa Caprari, Elena Molho (2019). Primal worst and dual best in robust vector optimization. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 275(3), 830-838 [10.1016/j.ejor.2019.01.003].
Lorenzo Cerboni Baiardi; Elisa Caprari; Elena Molho
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/864092
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact