Holographic communication is intended as a holistic way to manipulate, with unprecedented flexibility, the electromagnetic field generated or sensed by an antenna. This is of particular interest when using large antennas at high frequency (e.g., at millimeter-wave or terahertz), whose operating condition may easily fall in the Fresnel region (radiating near-field), where the classical plane wave propagation assumption is no longer valid. This article analyzes the optimal communication involving large intelligent surfaces realized, for example, with metamaterials as possible enabling technology for holographic communication. It is shown that traditional propagation models must be revised and that, when exploiting spherical wave propagation in the near-field region, new opportunities are opened, for example, in terms of feasible orthogonal communication channels.

Dardari D., Decarli N. (2021). Holographic Communication Using Intelligent Surfaces. IEEE COMMUNICATIONS MAGAZINE, 59(6), 35-41 [10.1109/MCOM.001.2001156].

Holographic Communication Using Intelligent Surfaces

Dardari D.
Conceptualization
;
Decarli N.
2021

Abstract

Holographic communication is intended as a holistic way to manipulate, with unprecedented flexibility, the electromagnetic field generated or sensed by an antenna. This is of particular interest when using large antennas at high frequency (e.g., at millimeter-wave or terahertz), whose operating condition may easily fall in the Fresnel region (radiating near-field), where the classical plane wave propagation assumption is no longer valid. This article analyzes the optimal communication involving large intelligent surfaces realized, for example, with metamaterials as possible enabling technology for holographic communication. It is shown that traditional propagation models must be revised and that, when exploiting spherical wave propagation in the near-field region, new opportunities are opened, for example, in terms of feasible orthogonal communication channels.
2021
Dardari D., Decarli N. (2021). Holographic Communication Using Intelligent Surfaces. IEEE COMMUNICATIONS MAGAZINE, 59(6), 35-41 [10.1109/MCOM.001.2001156].
Dardari D.; Decarli N.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/863046
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 61
  • ???jsp.display-item.citation.isi??? 43
social impact