Previous studies showed that dorsal psalterium (PSD) volleys to the entorhinal cortex (ENT) activated in layer II perforant path neurons projecting to the dentate gyrus. The discharge of layer II neurons was followed by the sequential activation of the dentate gyrus (DG), field CA3, field CA1. The aim of the present study was to ascertain whether in this experimental model field, CA2, a largely ignored sector, is activated either directly by perforant path volleys and/or indirectly by recurrent hippocampal projections. Field potentials evoked by single-shock PSD stimulation were recorded in anesthetized guinea pigs from ENT, DG, fields CA2, CA1, and CA3. Current source-density (CSD) analysis was used to localize the input/s to field CA2. The results showed the presence in field CA2 of an early population spike superimposed on a slow wave (early response) and of a late and smaller population spike, superimposed on a slow wave (late response). CSD analysis during the early CA2 response showed a current sink in stratum lacunosum-moleculare, followed by a sink moving from stratum radiatum to stratum pyramidale, suggesting that this response represented the activation and discharge of CA2 pyramidal neurons, mediated by perforant path fibers to this field. CSD analysis during the late response showed a current sink in middle stratum radiatum of CA2 followed by a sink moving from inner stratum radiatum to stratum pyramidale, suggesting that this response was mediated by Schaffer collaterals from field CA3. No early population spike was evoked in CA3. However, an early current sink of small magnitude was evoked in stratum lacunosum-moleculare of CA3, suggesting the presence of synaptic currents mediated by perforant path fibers to this field. The results provide novel information about the perforant path system, by showing that dorsal psalterium volleys to the entorhinal cortex activate perforant path neurons that evoke the parallel discharge of granule cells and CA2 pyramidal neurons and depolarization, but no discharge of CA3 pyramidal neurons. Consequently, field CA2 may mediate the direct transfer of ENT signals to hippocampal and extrahippocampal structures in parallel with the DG-CA3-CA1 system and may provide a security factor in situations in which the latter is disrupted.
Bartesaghi, R., Gessi, T. (2004). Parallel activation of field CA2 and dentate gyrus by synaptically elicited perforant path volleys. HIPPOCAMPUS, 14, 948-963.
Parallel activation of field CA2 and dentate gyrus by synaptically elicited perforant path volleys.
BARTESAGHI, RENATA;GESSI, TIZIANA
2004
Abstract
Previous studies showed that dorsal psalterium (PSD) volleys to the entorhinal cortex (ENT) activated in layer II perforant path neurons projecting to the dentate gyrus. The discharge of layer II neurons was followed by the sequential activation of the dentate gyrus (DG), field CA3, field CA1. The aim of the present study was to ascertain whether in this experimental model field, CA2, a largely ignored sector, is activated either directly by perforant path volleys and/or indirectly by recurrent hippocampal projections. Field potentials evoked by single-shock PSD stimulation were recorded in anesthetized guinea pigs from ENT, DG, fields CA2, CA1, and CA3. Current source-density (CSD) analysis was used to localize the input/s to field CA2. The results showed the presence in field CA2 of an early population spike superimposed on a slow wave (early response) and of a late and smaller population spike, superimposed on a slow wave (late response). CSD analysis during the early CA2 response showed a current sink in stratum lacunosum-moleculare, followed by a sink moving from stratum radiatum to stratum pyramidale, suggesting that this response represented the activation and discharge of CA2 pyramidal neurons, mediated by perforant path fibers to this field. CSD analysis during the late response showed a current sink in middle stratum radiatum of CA2 followed by a sink moving from inner stratum radiatum to stratum pyramidale, suggesting that this response was mediated by Schaffer collaterals from field CA3. No early population spike was evoked in CA3. However, an early current sink of small magnitude was evoked in stratum lacunosum-moleculare of CA3, suggesting the presence of synaptic currents mediated by perforant path fibers to this field. The results provide novel information about the perforant path system, by showing that dorsal psalterium volleys to the entorhinal cortex activate perforant path neurons that evoke the parallel discharge of granule cells and CA2 pyramidal neurons and depolarization, but no discharge of CA3 pyramidal neurons. Consequently, field CA2 may mediate the direct transfer of ENT signals to hippocampal and extrahippocampal structures in parallel with the DG-CA3-CA1 system and may provide a security factor in situations in which the latter is disrupted.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.