Layered double hydroxides (LDHs) are anionic clays which have found applications in a wide range of fields, including electrochemistry. In such a case, to display good performances they should possess electrical conductivity which can be ensured by the presence of metals able to give reversible redox reactions in a proper potential window. The metal centers can act as redox mediators to catalyze reactions for which the required overpotential is too high, and this is a key aspect for the development of processes and devices where the control of charge transfer reactions plays an important role. In order to act as redox mediator, a material can be present in solution or supported on a conductive support. The most commonly used methods to synthesize LDHs, referring both to bulk synthesis and in situ growth methods, which allow for the direct modification of conductive supports, are here summarized. In addition, the most widely used techniques to characterize the LDHs structure and morphology are also reported, since their electrochemical performance is strictly related to these features. Finally, some electrocatalytic applications of LDHs, when synthesized as nanomaterials, are discussed considering those related to sensing, oxygen evolution reaction, and other energy issues.

Synthesis and characterization of layered double hydroxides as materials for electrocatalytic applications / Tonelli D.; Gualandi I.; Musella E.; Scavetta E.. - In: NANOMATERIALS. - ISSN 2079-4991. - ELETTRONICO. - 11:3(2021), pp. 725.1-725.20. [10.3390/nano11030725]

Synthesis and characterization of layered double hydroxides as materials for electrocatalytic applications

Tonelli D.
;
Gualandi I.;Musella E.;Scavetta E.
2021

Abstract

Layered double hydroxides (LDHs) are anionic clays which have found applications in a wide range of fields, including electrochemistry. In such a case, to display good performances they should possess electrical conductivity which can be ensured by the presence of metals able to give reversible redox reactions in a proper potential window. The metal centers can act as redox mediators to catalyze reactions for which the required overpotential is too high, and this is a key aspect for the development of processes and devices where the control of charge transfer reactions plays an important role. In order to act as redox mediator, a material can be present in solution or supported on a conductive support. The most commonly used methods to synthesize LDHs, referring both to bulk synthesis and in situ growth methods, which allow for the direct modification of conductive supports, are here summarized. In addition, the most widely used techniques to characterize the LDHs structure and morphology are also reported, since their electrochemical performance is strictly related to these features. Finally, some electrocatalytic applications of LDHs, when synthesized as nanomaterials, are discussed considering those related to sensing, oxygen evolution reaction, and other energy issues.
2021
Synthesis and characterization of layered double hydroxides as materials for electrocatalytic applications / Tonelli D.; Gualandi I.; Musella E.; Scavetta E.. - In: NANOMATERIALS. - ISSN 2079-4991. - ELETTRONICO. - 11:3(2021), pp. 725.1-725.20. [10.3390/nano11030725]
Tonelli D.; Gualandi I.; Musella E.; Scavetta E.
File in questo prodotto:
File Dimensione Formato  
2021 Tonelli et al Nanomaterials.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Altra tipologia di licenza compatibile con Open Access
Dimensione 1.69 MB
Formato Adobe PDF
1.69 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/862679
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 22
social impact