The deep Boltzmann machine on the Nishimori line with a finite number of layers is exactly solved by a theorem that expresses its pressure through a finite dimensional variational problem of min–max type. In the absence of magnetic fields the order parameter is shown to exhibit a phase transition whose dependence on the geometry of the system is investigated.

Alberici D., Camilli F., Contucci P., Mingione E. (2021). The Solution of the Deep Boltzmann Machine on the Nishimori Line. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 387(2), 1191-1214 [10.1007/s00220-021-04165-0].

The Solution of the Deep Boltzmann Machine on the Nishimori Line

Camilli F.
;
Contucci P.;Mingione E.
2021

Abstract

The deep Boltzmann machine on the Nishimori line with a finite number of layers is exactly solved by a theorem that expresses its pressure through a finite dimensional variational problem of min–max type. In the absence of magnetic fields the order parameter is shown to exhibit a phase transition whose dependence on the geometry of the system is investigated.
2021
Alberici D., Camilli F., Contucci P., Mingione E. (2021). The Solution of the Deep Boltzmann Machine on the Nishimori Line. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 387(2), 1191-1214 [10.1007/s00220-021-04165-0].
Alberici D.; Camilli F.; Contucci P.; Mingione E.
File in questo prodotto:
File Dimensione Formato  
DBMNL.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 558.39 kB
Formato Adobe PDF
558.39 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/862321
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 14
social impact